|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Human MDMX liganded with a 12mer peptide inhibitor (pDI6W)== | | ==Human MDMX liganded with a 12mer peptide inhibitor (pDI6W)== |
- | <StructureSection load='3jzp' size='340' side='right' caption='[[3jzp]], [[Resolution|resolution]] 1.74Å' scene=''> | + | <StructureSection load='3jzp' size='340' side='right'caption='[[3jzp]], [[Resolution|resolution]] 1.74Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3jzp]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JZP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3JZP FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3jzp]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JZP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3JZP FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.74Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3jzo|3jzo]], [[3jzq|3jzq]], [[3jzr|3jzr]], [[3jzs|3jzs]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MDM4, MDMX ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3jzp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jzp OCA], [https://pdbe.org/3jzp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3jzp RCSB], [https://www.ebi.ac.uk/pdbsum/3jzp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3jzp ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3jzp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jzp OCA], [http://pdbe.org/3jzp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3jzp RCSB], [http://www.ebi.ac.uk/pdbsum/3jzp PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3jzp ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/MDM4_HUMAN MDM4_HUMAN]] Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Inhibits degradation of MDM2. Can reverse MDM2-targeted degradation of TP53 while maintaining suppression of TP53 transactivation and apoptotic functions.<ref>PMID:16163388</ref> <ref>PMID:16511572</ref> | + | [https://www.uniprot.org/uniprot/MDM4_HUMAN MDM4_HUMAN] Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Inhibits degradation of MDM2. Can reverse MDM2-targeted degradation of TP53 while maintaining suppression of TP53 transactivation and apoptotic functions.<ref>PMID:16163388</ref> <ref>PMID:16511572</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jz/3jzp_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jz/3jzp_consurf.spt"</scriptWhenChecked> |
| <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
Line 37: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
- | [[Category: Phan, J]] | + | [[Category: Large Structures]] |
- | [[Category: Schonbrunn, E]] | + | [[Category: Phan J]] |
- | [[Category: Cell cycle]] | + | [[Category: Schonbrunn E]] |
- | [[Category: Double minute 4 protein]]
| + | |
- | [[Category: Metal-binding]]
| + | |
- | [[Category: Nucleus]]
| + | |
- | [[Category: P53-binding protein mdm4]]
| + | |
- | [[Category: Zinc-finger]]
| + | |
| Structural highlights
Function
MDM4_HUMAN Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Inhibits degradation of MDM2. Can reverse MDM2-targeted degradation of TP53 while maintaining suppression of TP53 transactivation and apoptotic functions.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
MDM2 and MDMX function as key regulators of p53 by binding to its N terminus, inhibiting its transcriptional activity, and promoting degradation. MDM2 and MDMX overexpression or hyperactivation directly contributes to the loss of p53 function during the development of nearly 50% of human cancers. Recent studies showed that disrupting p53-MDM2 and p53-MDMX interactions can lead to robust activation of p53 but also revealed a need to develop novel dual specific or MDMX-specific inhibitors. Using phage display we identified a 12-residue peptide (pDI) with inhibitory activity against MDM2 and MDMX. The co-crystal structures of the pDI and a single mutant derivative (pDI6W) liganded with the N-terminal domains of human MDMX and MDM2 served as the basis for the design of 11 distinct pDI-derivative peptides that were tested for inhibitory potential. The best derivative (termed pDIQ) contained four amino acid substitutions and exhibited a 5-fold increase in potency over the parent peptide against both MDM2 (IC(50) = 8 nm) and MDMX (IC(50) = 110 nm). Further structural studies revealed key molecular features enabling the high affinity binding of the pDIQ to these proteins. These include large conformational changes of the pDIQ to reach into a hydrophobic site unique to MDMX. The findings suggest new strategies toward the rational design of small molecule inhibitors efficiently targeting MDMX.
Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX.,Phan J, Li Z, Kasprzak A, Li B, Sebti S, Guida W, Schonbrunn E, Chen J J Biol Chem. 2010 Jan 15;285(3):2174-83. Epub 2009 Nov 12. PMID:19910468[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Chen L, Gilkes DM, Pan Y, Lane WS, Chen J. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J. 2005 Oct 5;24(19):3411-22. Epub 2005 Sep 15. PMID:16163388 doi:10.1038/sj.emboj.7600812
- ↑ Jin Y, Dai MS, Lu SZ, Xu Y, Luo Z, Zhao Y, Lu H. 14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation. EMBO J. 2006 Mar 22;25(6):1207-18. Epub 2006 Mar 2. PMID:16511572 doi:10.1038/sj.emboj.7601010
- ↑ Phan J, Li Z, Kasprzak A, Li B, Sebti S, Guida W, Schonbrunn E, Chen J. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J Biol Chem. 2010 Jan 15;285(3):2174-83. Epub 2009 Nov 12. PMID:19910468 doi:10.1074/jbc.M109.073056
|