|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of the N. clavipes spidroin NTD at pH 6.5== | | ==Crystal structure of the N. clavipes spidroin NTD at pH 6.5== |
- | <StructureSection load='5iz2' size='340' side='right' caption='[[5iz2]], [[Resolution|resolution]] 2.02Å' scene=''> | + | <StructureSection load='5iz2' size='340' side='right'caption='[[5iz2]], [[Resolution|resolution]] 2.02Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5iz2]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IZ2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5IZ2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5iz2]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Trichonephila_clavipes Trichonephila clavipes]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IZ2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5IZ2 FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5iz2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5iz2 OCA], [http://pdbe.org/5iz2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5iz2 RCSB], [http://www.ebi.ac.uk/pdbsum/5iz2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5iz2 ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.02Å</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5iz2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5iz2 OCA], [https://pdbe.org/5iz2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5iz2 RCSB], [https://www.ebi.ac.uk/pdbsum/5iz2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5iz2 ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/B5SYS5_TRICX B5SYS5_TRICX] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atkison, J H]] | + | [[Category: Large Structures]] |
- | [[Category: Olsen, S K]] | + | [[Category: Trichonephila clavipes]] |
- | [[Category: Homodimer]] | + | [[Category: Atkison JH]] |
- | [[Category: Major ampullate]] | + | [[Category: Olsen SK]] |
- | [[Category: Spidroin]]
| + | |
- | [[Category: Structural protein]]
| + | |
| Structural highlights
Function
B5SYS5_TRICX
Publication Abstract from PubMed
Spider dragline silk is a natural polymer harboring unique physical and biochemical properties that make it an ideal biomaterial. Artificial silk production requires an understanding of the in vivo mechanisms spiders use to convert soluble proteins, called spidroins, into insoluble fibers. Controlled dimerization of the spidroin N-terminal domain (NTD) is crucial to this process. Here, we report the crystal structure of the Nephila clavipes major ampullate spidroin NTD dimer. Comparison of our structure to previously determined Euprosthenops australis structures reveals a subtle alteration in the structure of the NTD subunits that leads to differences in how the subunits are arranged at the dimer interface. We observe a subset of contacts that are specific to each ortholog, as well as a substantial increase in asymmetry in the interactions observed at the N. clavipes NTD dimer interface. These asymmetric interactions include novel intermolecular salt bridges that provide new insights into the mechanism of NTD dimerization. We also observe a unique intramolecular "handshake" interaction between two conserved acidic residues that our data suggest adds an additional layer of complexity to the pH-sensitive relay mechanism for NTD dimerization. The results of a panel of tryptophan fluorescence dimerization assays probing the importance of these interactions support our structural observations. Based on our findings, we propose that conformational selectivity and plasticity at the NTD dimer interface play a role in the pH-dependent transition of the NTD from monomer to stably associated dimer as the spidroin progresses through the silk extrusion duct.
Crystal Structure of the Nephila clavipes Major Ampullate Spidroin 1A N-terminal Domain Reveals Plasticity at the Dimer Interface.,Atkison JH, Parnham S, Marcotte WR Jr, Olsen SK J Biol Chem. 2016 Jul 21. pii: jbc.M116.736710. PMID:27445329[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Atkison JH, Parnham S, Marcotte WR Jr, Olsen SK. Crystal Structure of the Nephila clavipes Major Ampullate Spidroin 1A N-terminal Domain Reveals Plasticity at the Dimer Interface. J Biol Chem. 2016 Jul 21. pii: jbc.M116.736710. PMID:27445329 doi:http://dx.doi.org/10.1074/jbc.M116.736710
|