|
|
(3 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==kI O18/O8 N34I/Y87H immunoglobulin light chain variable domain== | | ==kI O18/O8 N34I/Y87H immunoglobulin light chain variable domain== |
- | <StructureSection load='3cdc' size='340' side='right' caption='[[3cdc]], [[Resolution|resolution]] 1.53Å' scene=''> | + | <StructureSection load='3cdc' size='340' side='right'caption='[[3cdc]], [[Resolution|resolution]] 1.53Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3cdc]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CDC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3CDC FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3cdc]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CDC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CDC FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3cdf|3cdf]], [[3cdy|3cdy]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.53Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">kI O18/O8 germline ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cdc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cdc OCA], [https://pdbe.org/3cdc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cdc RCSB], [https://www.ebi.ac.uk/pdbsum/3cdc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cdc ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3cdc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cdc OCA], [http://pdbe.org/3cdc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3cdc RCSB], [http://www.ebi.ac.uk/pdbsum/3cdc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3cdc ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/KV133_HUMAN KV133_HUMAN] V region of the variable domain of immunoglobulin light chains that participates in the antigen recognition (PubMed:24600447). Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:20176268, PubMed:22158414). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268).<ref>PMID:17576170</ref> <ref>PMID:20176268</ref> <ref>PMID:22158414</ref> <ref>PMID:24600447</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cd/3cdc_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cd/3cdc_consurf.spt"</scriptWhenChecked> |
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
Line 31: |
Line 32: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
- | [[Category: Baden, E M]] | + | [[Category: Large Structures]] |
- | [[Category: Ramirez-Alvarado, M]] | + | [[Category: Baden EM]] |
- | [[Category: Randles, E G]] | + | [[Category: Ramirez-Alvarado M]] |
- | [[Category: Thompson, J R]] | + | [[Category: Randles EG]] |
- | [[Category: Amyloid]]
| + | [[Category: Thompson JR]] |
- | [[Category: Greek key beta barrel]]
| + | |
- | [[Category: Immune system]]
| + | |
- | [[Category: Immunoglobulin]]
| + | |
- | [[Category: Light chain]]
| + | |
- | [[Category: Variable domain]]
| + | |
| Structural highlights
Function
KV133_HUMAN V region of the variable domain of immunoglobulin light chains that participates in the antigen recognition (PubMed:24600447). Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:20176268, PubMed:22158414). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268).[1] [2] [3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Mechanisms of amyloidogenesis are not well understood, including potential structural contributions of mutations in the process. Our previous research indicated that the dimer interface of amyloidogenic immunoglobulin light chain protein AL-09 is twisted 90 degrees relative to the protein from its germline sequence, kappaI O18/O8. Here we report a systematic restoration of AL-09 to its germline sequence by mutating the non-conservative somatic mutations located in the light chain dimer interface. Among these mutants, we find a correlation between increased thermodynamic stability and an increase in the lag time for fibril formation. The restorative mutant AL-09 H87Y completes the trifecta and restores the dimer interface observed in kappaI O18/O8, emphasizing the potential importance of the structural integrity of these proteins to protect against amyloidogenicity. We also find that adding amyloidogenic mutations into the germline protein illustrates mutational cooperativity in promoting amyloidogenesis.
Structural insights into the role of mutations in amyloidogenesis.,Baden EM, Randles EG, Aboagye AK, Thompson JR, Ramirez-Alvarado M J Biol Chem. 2008 Nov 7;283(45):30950-6. Epub 2008 Sep 2. PMID:18768467[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Teng G, Papavasiliou FN. Immunoglobulin somatic hypermutation. Annu Rev Genet. 2007;41:107-20. PMID:17576170 doi:http://dx.doi.org/10.1146/annurev.genet.41.110306.130340
- ↑ Schroeder HW Jr, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S41-52. doi:, 10.1016/j.jaci.2009.09.046. PMID:20176268 doi:http://dx.doi.org/10.1016/j.jaci.2009.09.046
- ↑ McHeyzer-Williams M, Okitsu S, Wang N, McHeyzer-Williams L. Molecular programming of B cell memory. Nat Rev Immunol. 2011 Dec 9;12(1):24-34. doi: 10.1038/nri3128. PMID:22158414 doi:http://dx.doi.org/10.1038/nri3128
- ↑ Lefranc MP. Immunoglobulin and T Cell Receptor Genes: IMGT((R)) and the Birth and Rise of Immunoinformatics. Front Immunol. 2014 Feb 5;5:22. doi: 10.3389/fimmu.2014.00022. eCollection 2014. PMID:24600447 doi:http://dx.doi.org/10.3389/fimmu.2014.00022
- ↑ Baden EM, Randles EG, Aboagye AK, Thompson JR, Ramirez-Alvarado M. Structural insights into the role of mutations in amyloidogenesis. J Biol Chem. 2008 Nov 7;283(45):30950-6. Epub 2008 Sep 2. PMID:18768467 doi:10.1074/jbc.M804822200
|