|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of T. celer L30e E62A/K46A variant== | | ==Crystal structure of T. celer L30e E62A/K46A variant== |
- | <StructureSection load='3ra6' size='340' side='right' caption='[[3ra6]], [[Resolution|resolution]] 2.00Å' scene=''> | + | <StructureSection load='3ra6' size='340' side='right'caption='[[3ra6]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3ra6]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_35543 Atcc 35543]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RA6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3RA6 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3ra6]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermococcus_celer Thermococcus celer]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RA6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3RA6 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1h7m|1h7m]], [[3ra5|3ra5]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">rpl30e ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=2264 ATCC 35543])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ra6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ra6 OCA], [https://pdbe.org/3ra6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ra6 RCSB], [https://www.ebi.ac.uk/pdbsum/3ra6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ra6 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ra6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ra6 OCA], [http://pdbe.org/3ra6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ra6 RCSB], [http://www.ebi.ac.uk/pdbsum/3ra6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ra6 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/RL30E_THECE RL30E_THECE] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 35543]] | + | [[Category: Large Structures]] |
- | [[Category: Chan, C H]] | + | [[Category: Thermococcus celer]] |
- | [[Category: Wong, K B]] | + | [[Category: Chan CH]] |
- | [[Category: Yu, T H]] | + | [[Category: Wong KB]] |
- | [[Category: Globular protein]] | + | [[Category: Yu TH]] |
- | [[Category: L30e]]
| + | |
- | [[Category: Ribosomal protein]]
| + | |
- | [[Category: Thermophilic]]
| + | |
| Structural highlights
Function
RL30E_THECE
Publication Abstract from PubMed
Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to DeltaC(p) in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The DeltaC(p) of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of DeltaC(p) by 0.8-1.0 kJ mol(1) K(1). Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing DeltaC(p), leading to the up-shifting and broadening of the protein stability curves.
Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding.,Chan CH, Yu TH, Wong KB PLoS One. 2011;6(6):e21624. Epub 2011 Jun 24. PMID:21720566[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Chan CH, Yu TH, Wong KB. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One. 2011;6(6):e21624. Epub 2011 Jun 24. PMID:21720566 doi:10.1371/journal.pone.0021624
|