|
|
| (One intermediate revision not shown.) |
| Line 1: |
Line 1: |
| | | | |
| | ==Crystal Structure of Pyrococcus abyssi Trm5a complexed with adenosine== | | ==Crystal Structure of Pyrococcus abyssi Trm5a complexed with adenosine== |
| - | <StructureSection load='5hji' size='340' side='right' caption='[[5hji]], [[Resolution|resolution]] 2.20Å' scene=''> | + | <StructureSection load='5hji' size='340' side='right'caption='[[5hji]], [[Resolution|resolution]] 2.20Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5hji]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5HJI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5HJI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5hji]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Pyrococcus_abyssi_GE5 Pyrococcus abyssi GE5]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5HJI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5HJI FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADN:ADENOSINE'>ADN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5hjj|5hjj]], [[5hjm|5hjm]], [[5hjk|5hjk]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADN:ADENOSINE'>ADN</scene></td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/tRNA_(guanine(37)-N(1))-methyltransferase tRNA (guanine(37)-N(1))-methyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.1.228 2.1.1.228] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5hji FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5hji OCA], [https://pdbe.org/5hji PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5hji RCSB], [https://www.ebi.ac.uk/pdbsum/5hji PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5hji ProSAT]</span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5hji FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5hji OCA], [http://pdbe.org/5hji PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5hji RCSB], [http://www.ebi.ac.uk/pdbsum/5hji PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5hji ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/TRM5A_PYRAB TRM5A_PYRAB]] Specifically methylates the N1 position of guanosine-37 in tRNA(Phe). In vitro, can also methylate the C7 position of 4-demethylwyosine (imG-14).<ref>PMID:20382657</ref> | + | [https://www.uniprot.org/uniprot/TAW22_PYRAB TAW22_PYRAB] Catalyzes both the N1-methylation of guanosine and the C7-methylation of 4-demethylwyosine (imG-14) at position 37 in tRNA(Phe).<ref>PMID:20382657</ref> <ref>PMID:27852927</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 20: |
Line 19: |
| | </div> | | </div> |
| | <div class="pdbe-citations 5hji" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 5hji" style="background-color:#fffaf0;"></div> |
| | + | |
| | + | ==See Also== |
| | + | *[[TRNA methyltransferase 3D structures|TRNA methyltransferase 3D structures]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Jia, Q]] | + | [[Category: Large Structures]] |
| - | [[Category: Wang, C]] | + | [[Category: Pyrococcus abyssi GE5]] |
| - | [[Category: Xie, W]] | + | [[Category: Jia Q]] |
| - | [[Category: Adenosine]] | + | [[Category: Wang C]] |
| - | [[Category: Methyltransferase]] | + | [[Category: Xie W]] |
| - | [[Category: Sam]]
| + | |
| - | [[Category: Transferase]]
| + | |
| - | [[Category: Trm5a]]
| + | |
| - | [[Category: Trna modification]]
| + | |
| Structural highlights
Function
TAW22_PYRAB Catalyzes both the N1-methylation of guanosine and the C7-methylation of 4-demethylwyosine (imG-14) at position 37 in tRNA(Phe).[1] [2]
Publication Abstract from PubMed
tRNA methyltransferase Trm5 catalyses the transfer of a methyl group from S-adenosyl-L-methionine to G37 in eukaryotes and archaea. The N1-methylated guanosine is the product of the initial step of the wyosine hypermodification, which is essential for the maintenance of the reading frame during translation. As a unique member of this enzyme family, Trm5a from Pyrococcus abyssi (PaTrm5a) catalyses not only the methylation of N1, but also the further methylation of C7 on 4-demethylwyosine at position 37 to produce isowyosine, but the mechanism for the double methylation is poorly understood. Here we report four crystal structures of PaTrm5a ranging from 1.7- to 2.3-A, in the apo form or in complex with various SAM analogues. These structures reveal that Asp243 specifically recognises the base moiety of SAM at the active site. Interestingly, the protein in our structures all displays an extended conformation, quite different from the well-folded conformation of Trm5b from Methanocaldococcus jannaschii reported previously, despite their similar overall architectures. To rule out the possibilities of crystallisation artefacts, we conducted the fluorescence resonance energy transfer (FRET) experiments. The FRET data suggested that PaTrm5a adopts a naturally extended conformation in solution, and therefore the open conformation is a genuine state of PaTrm5a.
Crystal structures of the bifunctional tRNA methyltransferase Trm5a.,Wang C, Jia Q, Chen R, Wei Y, Li J, Ma J, Xie W Sci Rep. 2016 Sep 15;6:33553. doi: 10.1038/srep33553. PMID:27629654[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ de Crecy-Lagard V, Brochier-Armanet C, Urbonavicius J, Fernandez B, Phillips G, Lyons B, Noma A, Alvarez S, Droogmans L, Armengaud J, Grosjean H. Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea. Mol Biol Evol. 2010 Sep;27(9):2062-77. doi: 10.1093/molbev/msq096. Epub 2010 Apr , 9. PMID:20382657 doi:http://dx.doi.org/10.1093/molbev/msq096
- ↑ Urbonavičius J, Rutkienė R, Lopato A, Tauraitė D, Stankevičiūtė J, Aučynaitė A, Kaliniene L, van Tilbeurgh H, Meškys R. Evolution of tRNAPhe:imG2 methyltransferases involved in the biosynthesis of wyosine derivatives in Archaea. RNA. 2016 Dec;22(12):1871-1883. PMID:27852927 doi:10.1261/rna.057059.116
- ↑ Wang C, Jia Q, Chen R, Wei Y, Li J, Ma J, Xie W. Crystal structures of the bifunctional tRNA methyltransferase Trm5a. Sci Rep. 2016 Sep 15;6:33553. doi: 10.1038/srep33553. PMID:27629654 doi:http://dx.doi.org/10.1038/srep33553
|