5mdz
From Proteopedia
(Difference between revisions)
m (Protected "5mdz" [edit=sysop:move=sysop]) |
|||
| (6 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | '''Unreleased structure''' | ||
| - | + | ==Structure of the 70S ribosome (empty A site)== | |
| + | <SX load='5mdz' size='340' side='right' viewer='molstar' caption='[[5mdz]], [[Resolution|resolution]] 3.10Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[5mdz]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MDZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5MDZ FirstGlance]. <br> | ||
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.1Å</td></tr> | ||
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=0TD:(3S)-3-(METHYLSULFANYL)-L-ASPARTIC+ACID'>0TD</scene>, <scene name='pdbligand=1MG:1N-METHYLGUANOSINE-5-MONOPHOSPHATE'>1MG</scene>, <scene name='pdbligand=2MA:2-METHYLADENOSINE-5-MONOPHOSPHATE'>2MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=3TD:(1S)-1,4-ANHYDRO-1-(3-METHYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDIN-5-YL)-5-O-PHOSPHONO-D-RIBITOL'>3TD</scene>, <scene name='pdbligand=4OC:4N,O2-METHYLCYTIDINE-5-MONOPHOSPHATE'>4OC</scene>, <scene name='pdbligand=4SU:4-THIOURIDINE-5-MONOPHOSPHATE'>4SU</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=6MZ:N6-METHYLADENOSINE-5-MONOPHOSPHATE'>6MZ</scene>, <scene name='pdbligand=7MG:7N-METHYL-8-HYDROGUANOSINE-5-MONOPHOSPHATE'>7MG</scene>, <scene name='pdbligand=8AN:3-AMINO-3-DEOXYADENOSINE+5-(DIHYDROGEN+PHOSPHATE)'>8AN</scene>, <scene name='pdbligand=FME:N-FORMYLMETHIONINE'>FME</scene>, <scene name='pdbligand=G7M:N7-METHYL-GUANOSINE-5-MONOPHOSPHATE'>G7M</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5mdz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mdz OCA], [https://pdbe.org/5mdz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5mdz RCSB], [https://www.ebi.ac.uk/pdbsum/5mdz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5mdz ProSAT]</span></td></tr> | ||
| + | </table> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/RL2_ECOLI RL2_ECOLI] One of the primary rRNA binding proteins. Located near the base of the L1 stalk, it is probably also mobile. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is highly controversial.[HAMAP-Rule:MF_01320_B] In the E.coli 70S ribosome in the initiation state it has been modeled to make several contacts with the 16S rRNA (forming bridge B7b, PubMed:12809609); these contacts are broken in the model with bound EF-G.[HAMAP-Rule:MF_01320_B] | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Ribosomes stall when they encounter the end of messenger RNA (mRNA) without an in-frame stop codon. In bacteria, these "nonstop" complexes can be rescued by alternative ribosome-rescue factor A (ArfA). We used electron cryomicroscopy to determine structures of ArfA bound to the ribosome with 3'-truncated mRNA, at resolutions ranging from 3.0 to 3.4 angstroms. ArfA binds within the ribosomal mRNA channel and substitutes for the absent stop codon in the A site by specifically recruiting release factor 2 (RF2), initially in a compact preaccommodated state. A similar conformation of RF2 may occur on stop codons, suggesting a general mechanism for release-factor-mediated translational termination in which a conformational switch leads to peptide release only when the appropriate signal is present in the A site. | ||
| - | + | Translational termination without a stop codon.,James NR, Brown A, Gordiyenko Y, Ramakrishnan V Science. 2016 Dec 16;354(6318):1437-1440. Epub 2016 Dec 1. PMID:27934701<ref>PMID:27934701</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | [[Category: | + | </div> |
| + | <div class="pdbe-citations 5mdz" style="background-color:#fffaf0;"></div> | ||
| + | |||
| + | ==See Also== | ||
| + | *[[Ribosome 3D structures|Ribosome 3D structures]] | ||
| + | == References == | ||
| + | <references/> | ||
| + | __TOC__ | ||
| + | </SX> | ||
| + | [[Category: Escherichia coli]] | ||
| + | [[Category: Large Structures]] | ||
| + | [[Category: Brown A]] | ||
| + | [[Category: Gordiyenko Y]] | ||
| + | [[Category: James NR]] | ||
| + | [[Category: Ramakrishnan V]] | ||
Current revision
Structure of the 70S ribosome (empty A site)
| |||||||||
