|
|
| (13 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| - | [[Image:1qja.jpg|left|200px]] | |
| | | | |
| - | {{Structure
| + | ==14-3-3 ZETA/PHOSPHOPEPTIDE COMPLEX (MODE 2)== |
| - | |PDB= 1qja |SIZE=350|CAPTION= <scene name='initialview01'>1qja</scene>, resolution 2.0Å
| + | <StructureSection load='1qja' size='340' side='right'caption='[[1qja]], [[Resolution|resolution]] 2.00Å' scene=''> |
| - | |SITE=
| + | == Structural highlights == |
| - | |LIGAND= <scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene> | + | <table><tr><td colspan='2'>[[1qja]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QJA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1QJA FirstGlance]. <br> |
| - | |ACTIVITY=
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
| - | |GENE=
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> |
| - | |DOMAIN=
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1qja FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qja OCA], [https://pdbe.org/1qja PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1qja RCSB], [https://www.ebi.ac.uk/pdbsum/1qja PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1qja ProSAT]</span></td></tr> |
| - | |RELATEDENTRY=
| + | </table> |
| - | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1qja FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qja OCA], [http://www.ebi.ac.uk/pdbsum/1qja PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1qja RCSB]</span>
| + | == Function == |
| - | }}
| + | [https://www.uniprot.org/uniprot/1433Z_HUMAN 1433Z_HUMAN] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner.<ref>PMID:9360956</ref> <ref>PMID:14578935</ref> <ref>PMID:15071501</ref> <ref>PMID:15644438</ref> <ref>PMID:16376338</ref> |
| | + | == Evolutionary Conservation == |
| | + | [[Image:Consurf_key_small.gif|200px|right]] |
| | + | Check<jmol> |
| | + | <jmolCheckbox> |
| | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qj/1qja_consurf.spt"</scriptWhenChecked> |
| | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| | + | <text>to colour the structure by Evolutionary Conservation</text> |
| | + | </jmolCheckbox> |
| | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1qja ConSurf]. |
| | + | <div style="clear:both"></div> |
| | + | <div style="background-color:#fffaf0;"> |
| | + | == Publication Abstract from PubMed == |
| | + | We have solved the high-resolution X-ray structure of 14-3-3 bound to two different phosphoserine peptides, representing alternative substrate-binding motifs. These structures reveal an evolutionarily conserved network of peptide-protein interactions within all 14-3-3 isotypes, explain both binding motifs, and identify a novel intrachain phosphorylation-mediated loop structure in one of the peptides. A 14-3-3 mutation disrupting Raf signaling alters the ligand-binding cleft, selecting a different phosphopeptide-binding motif and different substrates than the wild-type protein. Many 14-3-3: peptide contacts involve a C-terminal amphipathic alpha helix containing a putative nuclear export signal, implicating this segment in both ligand and Crm1 binding. Structural homology between the 14-3-3 NES structure and those within I kappa B alpha and p53 reveals a conserved topology recognized by the Crm1 nuclear export machinery. |
| | | | |
| - | '''14-3-3 ZETA/PHOSPHOPEPTIDE COMPLEX (MODE 2)'''
| + | Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding.,Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB Mol Cell. 1999 Aug;4(2):153-66. PMID:10488331<ref>PMID:10488331</ref> |
| | | | |
| | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| | + | </div> |
| | + | <div class="pdbe-citations 1qja" style="background-color:#fffaf0;"></div> |
| | | | |
| - | ==Overview== | + | ==See Also== |
| - | We have solved the high-resolution X-ray structure of 14-3-3 bound to two different phosphoserine peptides, representing alternative substrate-binding motifs. These structures reveal an evolutionarily conserved network of peptide-protein interactions within all 14-3-3 isotypes, explain both binding motifs, and identify a novel intrachain phosphorylation-mediated loop structure in one of the peptides. A 14-3-3 mutation disrupting Raf signaling alters the ligand-binding cleft, selecting a different phosphopeptide-binding motif and different substrates than the wild-type protein. Many 14-3-3: peptide contacts involve a C-terminal amphipathic alpha helix containing a putative nuclear export signal, implicating this segment in both ligand and Crm1 binding. Structural homology between the 14-3-3 NES structure and those within I kappa B alpha and p53 reveals a conserved topology recognized by the Crm1 nuclear export machinery.
| + | *[[14-3-3 protein|14-3-3 protein]] |
| - | | + | *[[14-3-3 protein 3D structures|14-3-3 protein 3D structures]] |
| - | ==About this Structure==
| + | == References == |
| - | 1QJA is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QJA OCA].
| + | <references/> |
| - | | + | __TOC__ |
| - | ==Reference== | + | </StructureSection> |
| - | Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding., Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB, Mol Cell. 1999 Aug;4(2):153-66. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/10488331 10488331]
| + | |
| | [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
| - | [[Category: Single protein]] | + | [[Category: Large Structures]] |
| - | [[Category: Budman, J.]] | + | [[Category: Budman J]] |
| - | [[Category: Cantley, L C.]] | + | [[Category: Cantley LC]] |
| - | [[Category: Gamblin, S J.]] | + | [[Category: Gamblin SJ]] |
| - | [[Category: Rittinger, K.]] | + | [[Category: Rittinger K]] |
| - | [[Category: Smerdon, S J.]] | + | [[Category: Smerdon SJ]] |
| - | [[Category: Volinia, S.]] | + | [[Category: Volinia S]] |
| - | [[Category: Xu, J.]] | + | [[Category: Xu J]] |
| - | [[Category: Yaffe, M B.]] | + | [[Category: Yaffe MB]] |
| - | [[Category: 14-3-3]]
| + | |
| - | [[Category: complex]]
| + | |
| - | [[Category: phosphopeptide]]
| + | |
| - | [[Category: signal transduction]]
| + | |
| - | | + | |
| - | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 23:14:25 2008''
| + | |
| Structural highlights
Function
1433Z_HUMAN Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner.[1] [2] [3] [4] [5]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
We have solved the high-resolution X-ray structure of 14-3-3 bound to two different phosphoserine peptides, representing alternative substrate-binding motifs. These structures reveal an evolutionarily conserved network of peptide-protein interactions within all 14-3-3 isotypes, explain both binding motifs, and identify a novel intrachain phosphorylation-mediated loop structure in one of the peptides. A 14-3-3 mutation disrupting Raf signaling alters the ligand-binding cleft, selecting a different phosphopeptide-binding motif and different substrates than the wild-type protein. Many 14-3-3: peptide contacts involve a C-terminal amphipathic alpha helix containing a putative nuclear export signal, implicating this segment in both ligand and Crm1 binding. Structural homology between the 14-3-3 NES structure and those within I kappa B alpha and p53 reveals a conserved topology recognized by the Crm1 nuclear export machinery.
Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding.,Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB Mol Cell. 1999 Aug;4(2):153-66. PMID:10488331[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Dubois T, Rommel C, Howell S, Steinhussen U, Soneji Y, Morrice N, Moelling K, Aitken A. 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J Biol Chem. 1997 Nov 14;272(46):28882-8. PMID:9360956
- ↑ Zheng W, Zhang Z, Ganguly S, Weller JL, Klein DC, Cole PA. Cellular stabilization of the melatonin rhythm enzyme induced by nonhydrolyzable phosphonate incorporation. Nat Struct Biol. 2003 Dec;10(12):1054-7. Epub 2003 Oct 26. PMID:14578935 doi:10.1038/nsb1005
- ↑ Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 2004 Apr 21;23(8):1889-99. Epub 2004 Apr 8. PMID:15071501 doi:10.1038/sj.emboj.7600194
- ↑ Ganguly S, Weller JL, Ho A, Chemineau P, Malpaux B, Klein DC. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1222-7. Epub 2005 Jan 11. PMID:15644438 doi:0406871102
- ↑ Gu YM, Jin YH, Choi JK, Baek KH, Yeo CY, Lee KY. Protein kinase A phosphorylates and regulates dimerization of 14-3-3 epsilon. FEBS Lett. 2006 Jan 9;580(1):305-10. Epub 2005 Dec 19. PMID:16376338 doi:S0014-5793(05)01485-7
- ↑ Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell. 1999 Aug;4(2):153-66. PMID:10488331
|