3s9o

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:50, 14 March 2024) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
==The Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase showing N-terminal interactions in cis==
==The Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase showing N-terminal interactions in cis==
-
<StructureSection load='3s9o' size='340' side='right' caption='[[3s9o]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
+
<StructureSection load='3s9o' size='340' side='right'caption='[[3s9o]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[3s9o]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3S9O OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3S9O FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[3s9o]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3S9O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3S9O FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1k05|1k05]], [[1k04|1k04]]</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">FAK, FAK1, PTK2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3s9o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3s9o OCA], [https://pdbe.org/3s9o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3s9o RCSB], [https://www.ebi.ac.uk/pdbsum/3s9o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3s9o ProSAT]</span></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr>
+
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3s9o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3s9o OCA], [http://pdbe.org/3s9o PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3s9o RCSB], [http://www.ebi.ac.uk/pdbsum/3s9o PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3s9o ProSAT]</span></td></tr>
+
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/FAK1_HUMAN FAK1_HUMAN]] Note=Aberrant PTK2/FAK1 expression may play a role in cancer cell proliferation, migration and invasion, in tumor formation and metastasis. PTK2/FAK1 overexpression is seen in many types of cancer.<ref>PMID:11980671</ref> <ref>PMID:18006843</ref> <ref>PMID:17395594</ref> <ref>PMID:17431114</ref> <ref>PMID:19147981</ref> <ref>PMID:20495381</ref> <ref>PMID:16919435</ref> <ref>PMID:18677107</ref> <ref>PMID:19224453</ref>
+
[https://www.uniprot.org/uniprot/FAK1_HUMAN FAK1_HUMAN] Note=Aberrant PTK2/FAK1 expression may play a role in cancer cell proliferation, migration and invasion, in tumor formation and metastasis. PTK2/FAK1 overexpression is seen in many types of cancer.<ref>PMID:11980671</ref> <ref>PMID:18006843</ref> <ref>PMID:17395594</ref> <ref>PMID:17431114</ref> <ref>PMID:19147981</ref> <ref>PMID:20495381</ref> <ref>PMID:16919435</ref> <ref>PMID:18677107</ref> <ref>PMID:19224453</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/FAK1_HUMAN FAK1_HUMAN]] Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription.<ref>PMID:10655584</ref> <ref>PMID:11331870</ref> <ref>PMID:11980671</ref> <ref>PMID:15166238</ref> <ref>PMID:15561106</ref> <ref>PMID:15895076</ref> <ref>PMID:18006843</ref> <ref>PMID:17395594</ref> <ref>PMID:16927379</ref> <ref>PMID:17431114</ref> <ref>PMID:18497331</ref> <ref>PMID:18292575</ref> <ref>PMID:18256281</ref> <ref>PMID:18206965</ref> <ref>PMID:19138410</ref> <ref>PMID:19147981</ref> <ref>PMID:20495381</ref> <ref>PMID:20109444</ref> <ref>PMID:21454698</ref> <ref>PMID:16919435</ref> <ref>PMID:18677107</ref> <ref>PMID:19224453</ref>
+
[https://www.uniprot.org/uniprot/FAK1_HUMAN FAK1_HUMAN] Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription.<ref>PMID:10655584</ref> <ref>PMID:11331870</ref> <ref>PMID:11980671</ref> <ref>PMID:15166238</ref> <ref>PMID:15561106</ref> <ref>PMID:15895076</ref> <ref>PMID:18006843</ref> <ref>PMID:17395594</ref> <ref>PMID:16927379</ref> <ref>PMID:17431114</ref> <ref>PMID:18497331</ref> <ref>PMID:18292575</ref> <ref>PMID:18256281</ref> <ref>PMID:18206965</ref> <ref>PMID:19138410</ref> <ref>PMID:19147981</ref> <ref>PMID:20495381</ref> <ref>PMID:20109444</ref> <ref>PMID:21454698</ref> <ref>PMID:16919435</ref> <ref>PMID:18677107</ref> <ref>PMID:19224453</ref>
-
<div style="background-color:#fffaf0;">
+
-
== Publication Abstract from PubMed ==
+
-
Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr(925) facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr(925) phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr(861), located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser(910) by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule.
+
-
 
+
-
Conformational dynamics of the focal adhesion targeting domain control specific functions of focal adhesion kinase in cells.,Kadare G, Gervasi N, Brami-Cherrier K, Blockus H, El Messari S, Arold ST, Girault JA J Biol Chem. 2015 Jan 2;290(1):478-91. doi: 10.1074/jbc.M114.593632. Epub 2014, Nov 12. PMID:25391654<ref>PMID:25391654</ref>
+
-
 
+
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 3s9o" style="background-color:#fffaf0;"></div>
+
==See Also==
==See Also==
-
*[[Focal adhesion kinase|Focal adhesion kinase]]
+
*[[Focal adhesion kinase 3D structures|Focal adhesion kinase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
-
[[Category: Non-specific protein-tyrosine kinase]]
+
[[Category: Large Structures]]
-
[[Category: Arold, S T]]
+
[[Category: Arold ST]]
-
[[Category: 4-helix bundle]]
+
-
[[Category: Focal adhesion targeting]]
+
-
[[Category: Nucleus]]
+
-
[[Category: Phosphorylation]]
+
-
[[Category: Protein binding]]
+
-
[[Category: Transferase]]
+

Current revision

The Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase showing N-terminal interactions in cis

PDB ID 3s9o

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools