|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==The PWWP domain of human DNA (CYTOSINE-5-)-METHYLTRANSFERASE 3 BETA in complex with a bis-tris molecule== | | ==The PWWP domain of human DNA (CYTOSINE-5-)-METHYLTRANSFERASE 3 BETA in complex with a bis-tris molecule== |
- | <StructureSection load='3qkj' size='340' side='right' caption='[[3qkj]], [[Resolution|resolution]] 2.04Å' scene=''> | + | <StructureSection load='3qkj' size='340' side='right'caption='[[3qkj]], [[Resolution|resolution]] 2.04Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3qkj]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3QKJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3QKJ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3qkj]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3QKJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3QKJ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BTB:2-[BIS-(2-HYDROXY-ETHYL)-AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>BTB</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.04Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3qkj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3qkj OCA], [http://pdbe.org/3qkj PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3qkj RCSB], [http://www.ebi.ac.uk/pdbsum/3qkj PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3qkj ProSAT]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BTB:2-[BIS-(2-HYDROXY-ETHYL)-AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>BTB</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3qkj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3qkj OCA], [https://pdbe.org/3qkj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3qkj RCSB], [https://www.ebi.ac.uk/pdbsum/3qkj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3qkj ProSAT]</span></td></tr> |
| </table> | | </table> |
- | <div style="background-color:#fffaf0;">
| + | == Disease == |
- | == Publication Abstract from PubMed == | + | [https://www.uniprot.org/uniprot/DNM3B_HUMAN DNM3B_HUMAN] ICF syndrome. The disease is caused by mutations affecting the gene represented in this entry.<ref>PMID:10647011</ref> <ref>PMID:10555141</ref> <ref>PMID:10588719</ref> <ref>PMID:11102980</ref> <ref>PMID:15580563</ref> |
- | BACKGROUND: The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. METHODOLOGY/PRINCIPAL FINDINGS: The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. CONCLUSIONS: PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical beta-barrel core, an insertion motif between the second and third beta-strands and a C-terminal alpha-helix bundle. Both the canonical beta-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
| + | == Function == |
- | | + | [https://www.uniprot.org/uniprot/DNM3B_HUMAN DNM3B_HUMAN] Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. DNA methylation is coordinated with methylation of histones. May preferentially methylates nucleosomal DNA within the nucleosome core region. May function as transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. Seems to be involved in gene silencing (By similarity). In association with DNMT1 and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Isoforms 4 and 5 are probably not functional due to the deletion of two conserved methyltransferase motifs. Function as transcriptional corepressor by associating with ZHX1.<ref>PMID:16357870</ref> <ref>PMID:17303076</ref> <ref>PMID:18413740</ref> <ref>PMID:18567530</ref> |
- | Structural and Histone Binding Ability Characterizations of Human PWWP Domains.,Wu H, Zeng H, Lam R, Tempel W, Amaya MF, Xu C, Dombrovski L, Qiu W, Wang Y, Min J PLoS One. 2011;6(6):e18919. Epub 2011 Jun 20. PMID:21720545<ref>PMID:21720545</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div> | + | |
- | <div class="pdbe-citations 3qkj" style="background-color:#fffaf0;"></div> | + | |
| | | |
| ==See Also== | | ==See Also== |
- | *[[DNA methyltransferase|DNA methyltransferase]] | + | *[[DNA methyltransferase 3D structures|DNA methyltransferase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
- | [[Category: Amaya, M F]] | + | [[Category: Large Structures]] |
- | [[Category: Arrowsmith, C H]] | + | [[Category: Amaya MF]] |
- | [[Category: Botchkarev, A]] | + | [[Category: Arrowsmith CH]] |
- | [[Category: Edwards, A M]] | + | [[Category: Botchkarev A]] |
- | [[Category: Mackenzie, F]] | + | [[Category: Edwards AM]] |
- | [[Category: Min, J]] | + | [[Category: Mackenzie F]] |
- | [[Category: Structural genomic]]
| + | [[Category: Min J]] |
- | [[Category: Sundstrom, M]] | + | [[Category: Sundstrom M]] |
- | [[Category: Weigelt, J]] | + | [[Category: Weigelt J]] |
- | [[Category: Wu, H]] | + | [[Category: Wu H]] |
- | [[Category: Zeng, H]] | + | [[Category: Zeng H]] |
- | [[Category: Dnmt3b]]
| + | |
- | [[Category: Methyltransferase 3 beta]]
| + | |
- | [[Category: Pwwp domain]]
| + | |
- | [[Category: S-adenosyl-l-methionine]]
| + | |
- | [[Category: Sgc]]
| + | |
- | [[Category: Transferase]]
| + | |
- | [[Category: Zinc-finger]]
| + | |
| Structural highlights
Disease
DNM3B_HUMAN ICF syndrome. The disease is caused by mutations affecting the gene represented in this entry.[1] [2] [3] [4] [5]
Function
DNM3B_HUMAN Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. DNA methylation is coordinated with methylation of histones. May preferentially methylates nucleosomal DNA within the nucleosome core region. May function as transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. Seems to be involved in gene silencing (By similarity). In association with DNMT1 and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Isoforms 4 and 5 are probably not functional due to the deletion of two conserved methyltransferase motifs. Function as transcriptional corepressor by associating with ZHX1.[6] [7] [8] [9]
See Also
References
- ↑ Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999 Nov 11;402(6758):187-91. PMID:10647011 doi:http://dx.doi.org/10.1038/46052
- ↑ Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999 Oct 29;99(3):247-57. PMID:10555141
- ↑ Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, Gartler SM. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14412-7. PMID:10588719
- ↑ Wijmenga C, Hansen RS, Gimelli G, Bjorck EJ, Davies EG, Valentine D, Belohradsky BH, van Dongen JJ, Smeets DF, van den Heuvel LP, Luyten JA, Strengman E, Weemaes C, Pearson PL. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000 Dec;16(6):509-17. PMID:11102980 doi:<509::AID-HUMU8>3.0.CO;2-V http://dx.doi.org/10.1002/1098-1004(200012)16:6<509::AID-HUMU8>3.0.CO;2-V
- ↑ Jiang YL, Rigolet M, Bourc'his D, Nigon F, Bokesoy I, Fryns JP, Hulten M, Jonveaux P, Maraschio P, Megarbane A, Moncla A, Viegas-Pequignot E. DNMT3B mutations and DNA methylation defect define two types of ICF syndrome. Hum Mutat. 2005 Jan;25(1):56-63. PMID:15580563 doi:http://dx.doi.org/10.1002/humu.20113
- ↑ Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006 Feb 16;439(7078):871-4. Epub 2005 Dec 14. PMID:16357870 doi:10.1038/nature04431
- ↑ Kim SH, Park J, Choi MC, Kim HP, Park JH, Jung Y, Lee JH, Oh DY, Im SA, Bang YJ, Kim TY. Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression. Biochem Biophys Res Commun. 2007 Apr 6;355(2):318-23. Epub 2007 Feb 8. PMID:17303076 doi:http://dx.doi.org/10.1016/j.bbrc.2007.01.187
- ↑ Sun L, Huang L, Nguyen P, Bisht KS, Bar-Sela G, Ho AS, Bradbury CM, Yu W, Cui H, Lee S, Trepel JB, Feinberg AP, Gius D. DNA methyltransferase 1 and 3B activate BAG-1 expression via recruitment of CTCFL/BORIS and modulation of promoter histone methylation. Cancer Res. 2008 Apr 15;68(8):2726-35. PMID:18413740 doi:68/8/2726
- ↑ Kim SH, Park J, Choi MC, Park JH, Kim HP, Lee JH, Oh DY, Im SA, Bang YJ, Kim TY. DNA methyltransferase 3B acts as a co-repressor of the human polycomb protein hPc2 to repress fibroblast growth factor receptor 3 transcription. Int J Biochem Cell Biol. 2008;40(11):2462-71. doi: 10.1016/j.biocel.2008.04.018. , Epub 2008 May 18. PMID:18567530 doi:http://dx.doi.org/10.1016/j.biocel.2008.04.018
|