5mo4
From Proteopedia
(Difference between revisions)
m (Protected "5mo4" [edit=sysop:move=sysop]) |
|||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | '''Unreleased structure''' | ||
| - | + | ==ABL1 kinase (T334I_D382N) in complex with asciminib and nilotinib== | |
| + | <StructureSection load='5mo4' size='340' side='right'caption='[[5mo4]], [[Resolution|resolution]] 2.17Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[5mo4]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MO4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5MO4 FirstGlance]. <br> | ||
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.17Å</td></tr> | ||
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AY7:ASCIMINIB'>AY7</scene>, <scene name='pdbligand=NIL:NILOTINIB'>NIL</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5mo4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mo4 OCA], [https://pdbe.org/5mo4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5mo4 RCSB], [https://www.ebi.ac.uk/pdbsum/5mo4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5mo4 ProSAT]</span></td></tr> | ||
| + | </table> | ||
| + | == Disease == | ||
| + | [https://www.uniprot.org/uniprot/ABL1_HUMAN ABL1_HUMAN] Note=A chromosomal aberration involving ABL1 is a cause of chronic myeloid leukemia. Translocation t(9;22)(q34;q11) with BCR. The translocation produces a BCR-ABL found also in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/ABL1_HUMAN ABL1_HUMAN] Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9. Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 acts also as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1.<ref>PMID:9037071</ref> <ref>PMID:9144171</ref> <ref>PMID:9461559</ref> <ref>PMID:10391250</ref> <ref>PMID:12379650</ref> <ref>PMID:11971963</ref> <ref>PMID:12531427</ref> <ref>PMID:12672821</ref> <ref>PMID:15556646</ref> <ref>PMID:15031292</ref> <ref>PMID:15886098</ref> <ref>PMID:15657060</ref> <ref>PMID:16943190</ref> <ref>PMID:16678104</ref> <ref>PMID:17306540</ref> <ref>PMID:17623672</ref> <ref>PMID:18328268</ref> <ref>PMID:18945674</ref> <ref>PMID:19891780</ref> <ref>PMID:20417104</ref> <ref>PMID:16424036</ref> <ref>PMID:20357770</ref> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Chronic myeloid leukaemia (CML) is driven by the activity of the BCR-ABL1 fusion oncoprotein. ABL1 kinase inhibitors have improved the clinical outcomes for patients with CML, with over 80% of patients treated with imatinib surviving for more than 10 years. Second-generation ABL1 kinase inhibitors induce more potent molecular responses in both previously untreated and imatinib-resistant patients with CML. Studies in patients with chronic-phase CML have shown that around 50% of patients who achieve and maintain undetectable BCR-ABL1 transcript levels for at least 2 years remain disease-free after the withdrawal of treatment. Here we characterize ABL001 (asciminib), a potent and selective allosteric ABL1 inhibitor that is undergoing clinical development testing in patients with CML and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukaemia. In contrast to catalytic-site ABL1 kinase inhibitors, ABL001 binds to the myristoyl pocket of ABL1 and induces the formation of an inactive kinase conformation. ABL001 and second-generation catalytic inhibitors have similar cellular potencies but distinct patterns of resistance mutations, with genetic barcoding studies revealing pre-existing clonal populations with no shared resistance between ABL001 and the catalytic inhibitor nilotinib. Consistent with this profile, acquired resistance was observed with single-agent therapy in mice; however, the combination of ABL001 and nilotinib led to complete disease control and eradicated CML xenograft tumours without recurrence after the cessation of treatment. | ||
| - | + | The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1.,Wylie AA, Schoepfer J, Jahnke W, Cowan-Jacob SW, Loo A, Furet P, Marzinzik AL, Pelle X, Donovan J, Zhu W, Buonamici S, Hassan AQ, Lombardo F, Iyer V, Palmer M, Berellini G, Dodd S, Thohan S, Bitter H, Branford S, Ross DM, Hughes TP, Petruzzelli L, Vanasse KG, Warmuth M, Hofmann F, Keen NJ, Sellers WR Nature. 2017 Mar 30;543(7647):733-737. doi: 10.1038/nature21702. Epub 2017 Mar, 22. PMID:28329763<ref>PMID:28329763</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | [[Category: | + | </div> |
| - | [[Category: Cowan-Jacob | + | <div class="pdbe-citations 5mo4" style="background-color:#fffaf0;"></div> |
| + | == References == | ||
| + | <references/> | ||
| + | __TOC__ | ||
| + | </StructureSection> | ||
| + | [[Category: Homo sapiens]] | ||
| + | [[Category: Large Structures]] | ||
| + | [[Category: Cowan-Jacob SW]] | ||
Current revision
ABL1 kinase (T334I_D382N) in complex with asciminib and nilotinib
| |||||||||||
