5mqh

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "5mqh" [edit=sysop:move=sysop])
Current revision (17:44, 8 November 2023) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 5mqh is ON HOLD until Paper Publication
+
==Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis in a crystal form without domain swapping==
 +
<StructureSection load='5mqh' size='340' side='right'caption='[[5mqh]], [[Resolution|resolution]] 2.45&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5mqh]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MQH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5MQH FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.45&#8491;</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5mqh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mqh OCA], [https://pdbe.org/5mqh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5mqh RCSB], [https://www.ebi.ac.uk/pdbsum/5mqh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5mqh ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/SP2E_BACSU SP2E_BACSU] Normally needed for pro-sigma E processing during sporulation but can be bypassed in vegetative cells. Activates SpoIIAA by dephosphorylation.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
PP2C phosphatases control biological processes including stress responses, development, and cell division in all kingdoms of life. Diverse regulatory domains adapt PP2C phosphatases to specific functions, but how these domains control phosphatase activity was unknown. We present structures representing active and inactive states of the PP2C phosphatase SpoIIE from Bacillus subtilis. Based on structural analyses and genetic and biochemical experiments, we identify an alpha-helical switch that shifts a carbonyl oxygen into the active site to coordinate a metal cofactor. Our analysis indicates that this switch is widely conserved among PP2C family members, serving as a platform to control phosphatase activity in response to diverse inputs. Remarkably, the switch is shared with proteasomal proteases, which we identify as evolutionary and structural relatives of PP2C phosphatases. Although these proteases use an unrelated catalytic mechanism, rotation of equivalent helices controls protease activity by movement of the equivalent carbonyl oxygen into the active site.
-
Authors:
+
A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasomal proteases.,Bradshaw N, Levdikov VM, Zimanyi CM, Gaudet R, Wilkinson AJ, Losick R Elife. 2017 May 20;6. pii: e26111. doi: 10.7554/eLife.26111. PMID:28527238<ref>PMID:28527238</ref>
-
Description:
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
 +
<div class="pdbe-citations 5mqh" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Bacillus subtilis]]
 +
[[Category: Large Structures]]
 +
[[Category: Blagova EV]]
 +
[[Category: Levdikov VM]]
 +
[[Category: Wilkinson AJ]]

Current revision

Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis in a crystal form without domain swapping

PDB ID 5mqh

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools