5hgx
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
==Crystal Structure of Transketolase mutant - H261F from Pichia Stipitis== | ==Crystal Structure of Transketolase mutant - H261F from Pichia Stipitis== | ||
- | <StructureSection load='5hgx' size='340' side='right' caption='[[5hgx]], [[Resolution|resolution]] 1.09Å' scene=''> | + | <StructureSection load='5hgx' size='340' side='right'caption='[[5hgx]], [[Resolution|resolution]] 1.09Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[5hgx]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5HGX OCA]. For a <b>guided tour on the structure components</b> use [ | + | <table><tr><td colspan='2'>[[5hgx]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Scheffersomyces_stipitis_CBS_6054 Scheffersomyces stipitis CBS 6054]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5HGX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5HGX FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.09Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1PE:PENTAETHYLENE+GLYCOL'>1PE</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5hgx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5hgx OCA], [https://pdbe.org/5hgx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5hgx RCSB], [https://www.ebi.ac.uk/pdbsum/5hgx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5hgx ProSAT]</span></td></tr> | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | |
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/TKT_PICST TKT_PICST] Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. |
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | In the development of new functionalities of transketolase for the industrial strain Pichia stipitis (TKps) the structural information of TKps would allow us to gain insight into the enzyme's reaction mechanisms, substrates selectivity and reaction directionality to help reach the goal. We here report seven TKps crystal structures of wild type (WT) and mutants in complex with various physiological ligands. These complexes were refined to resolutions at 1.6-1.03 A. Both biochemical and mutagenic analyses concluded that residues His27, His66, His100, His261, His478, Asp473, Arg356 and Arg525 play important roles in coenzyme binding and substrates recognition. In general, His66 and His261 hold thiamine diphosphate in place; Arg356 and Arg525 serve as gatekeepers interacting with the terminal phosphate group of sugar-phosphates. His27, His66, His100, His478 and Asp473 are critical for sugars recognition/binding, in which His27 is relatively more important in interaction with sedoheptulose-7-phosphate (S7P) than xylulose-5-phosphate (X5P) in terms of molecular recognition/binding affinity. Kinetically, the reactions with X5P (forward) which were catalyzed by WT or H27A are indistinguishable, while in the reactions with S7P (backward) H27A exhibits weaker activity relative to WT. As a result, given TKps(H27A) as the biocatalyst the overall reactivity reverses from the backward reaction preference to forward, thus facilitating net xylose assimilation. | ||
+ | |||
+ | Structural and biochemical interrogation on transketolase from Pichia stipitis for new functionality.,Hsu LJ, Hsu NS, Wang YL, Wu CJ, Li TL Protein Eng Des Sel. 2016 Aug 29. PMID:27578891<ref>PMID:27578891</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 5hgx" style="background-color:#fffaf0;"></div> | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Transketolase 3D structures|Transketolase 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Scheffersomyces stipitis CBS 6054]] |
- | [[Category: Hsu | + | [[Category: Hsu LJ]] |
- | [[Category: | + | [[Category: Hsu NS]] |
- | [[Category: | + | [[Category: Li TL]] |
Current revision
Crystal Structure of Transketolase mutant - H261F from Pichia Stipitis
|