Template:Sandbox Reserved O'Brochta HLSC322

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(HLSC322 Project: Exploring Structure/Function of Genetically Relevant Molecules)
Current revision (22:45, 16 February 2017) (edit) (undo)
(HLSC322 Genetics O'Brochta)
 
(15 intermediate revisions not shown.)
Line 1: Line 1:
-
==HLSC322 Project: Exploring Structure/Function of Genetically Relevant Molecules==
+
==genetics is ok==
-
==
+
=='Molecules it Interacts With and where '==
 +
 
 +
The protein binds to GDP as well as the following ligands in order to promote the attachment of the protein complex to the ribosome A site.
 +
 
 +
''PHOSHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER''
 +
 +
 
 +
''PHENYLALANINE''
 +
''MAGNESIUM ION''
 +
 
 +
 
 +
=='Origin'==
 +
 
 +
It has domains that are created in yeast (phenyl-transfer RNA) , in the heat resistant ''Thermus aquaticus'' (EF-Tu elongation factor, and can be synthetically manufactured.
 +
 
 +
 
 +
=='Structure'==
 +
 
 +
 
 +
It has 3 domains. G proteins, Elongation Factors, and the EF-Tu/eEF-1alpha/eIF2-gamma C-terminal domain. It is composed of 6 chains, which combine in <scene name='75/751161/Hetero_domains/1'>Heterodimer </scene> alignment.
 +
 
 +
 
 +
Specific <scene name='75/751161/Ligand_site/1'>Ligand Sites</scene> are highlighted here. The ligands listed above, GDP, Phe, and Mg+2 ion each attach at these locations which are still being explored.
 +
 
 +
<scene name='75/751161/Basic_positive_residues/2'>Basic and Positive Residues</scene> which play a crucial role in binding to the ribosome during translation. They form positive pockets with which negative amino acids can bind to.
 +
 
 +
=='Molecules it Interacts With and where '==
 +
 
 +
The protein binds to GDP as well as the following ligands in order to promote the attachment of the protein complex to the ribosome A site.
 +
 
 +
''PHOSHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER''
 +
 +
 
 +
''PHENYLALANINE''
 +
''MAGNESIUM ION''
 +
 
 +
 
 +
=='Origin'==
 +
 
 +
It has domains that are created in yeast (phenyl-transfer RNA) , in the heat resistant ''Thermus aquaticus'' (EF-Tu elongation factor, and can be synthetically manufactured.
 +
 
 +
 
 +
=='Structure'==
 +
 
 +
 
 +
It has 3 domains. G proteins, Elongation Factors, and the EF-Tu/eEF-1alpha/eIF2-gamma C-terminal domain. It is composed of 6 chains, which combine in <scene name='75/751161/Hetero_domains/1'>Heterodimer </scene> alignment.
 +
 
 +
 
 +
Specific <scene name='75/751161/Ligand_site/1'>Ligand Sites</scene> are highlighted here.
 +
 
 +
<scene name='75/751161/Basic_positive_residues/2'>Basic and Positive Residues</scene> which play a crucial role in binding to the ribosome during translation.
 +
 
 +
=='Function"==
 +
 
 +
 
 +
 
 +
 
 +
 
 +
The protein complex participates in placing the amino acids in their correct order when messenger RNA is translated into a protein sequence on the ribosome by promoting GTP-dependent binding of tRNA to the A site of the ribosome. In other words, it is involved with elongation during polypeptide synthesis.
 +
 
 +
<Structure load='1ttt' size='350' frame='true' align='right' caption='Phe-tRNA, elongation factor EF-TU:GDPNP Ternary complex'
 +
 
 +
=='Molecules it Interacts With and where '==
 +
 
 +
The protein binds to GDP as well as the following ligands in order to promote the attachment of the protein complex to the ribosome A site.
 +
 
 +
''PHOSHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER''
 +
 +
 
 +
''PHENYLALANINE''
 +
''MAGNESIUM ION''
 +
 
 +
 
 +
=='Origin'==
 +
 
 +
It has domains that are created in yeast (phenyl-transfer RNA) , in the heat resistant ''Thermus aquaticus'' (EF-Tu elongation factor, and can be synthetically manufactured.
 +
 
 +
 
 +
=='Structure'==
 +
 
 +
 
 +
It has 3 domains. G proteins, Elongation Factors, and the EF-Tu/eEF-1alpha/eIF2-gamma C-terminal domain. It is composed of 6 chains, which combine in <scene name='75/751161/Hetero_domains/1'>Heterodimer </scene> alignment.
 +
 
 +
 
 +
Specific <scene name='75/751161/Ligand_site/1'>Ligand Sites</scene> are highlighted here. The ligands listed above, GDP, Phe, and Mg+2 ion each attach at these locations which are still being explored.
 +
 
 +
<scene name='75/751161/Basic_positive_residues/2'>Basic and Positive Residues</scene> which play a crucial role in binding to the ribosome during translation. They form positive pockets with which negative amino acids can bind to.
 +
 
 +
=='Molecules it Interacts With and where '==
 +
 
 +
The protein binds to GDP as well as the following ligands in order to promote the attachment of the protein complex to the ribosome A site.
 +
 
 +
''PHOSHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER''
 +
 +
 
 +
''PHENYLALANINE''
 +
''MAGNESIUM ION''
 +
 
 +
 
 +
=='Origin'==
 +
 
 +
It has domains that are created in yeast (phenyl-transfer RNA) , in the heat resistant ''Thermus aquaticus'' (EF-Tu elongation factor, and can be synthetically manufactured.
 +
 
 +
 
 +
=='Structure'==
 +
 
 +
 
 +
It has 3 domains. G proteins, Elongation Factors, and the EF-Tu/eEF-1alpha/eIF2-gamma C-terminal domain. It is composed of 6 chains, which combine in <scene name='75/751161/Hetero_domains/1'>Heterodimer </scene> alignment.
 +
 
 +
 
 +
Specific <scene name='75/751161/Ligand_site/1'>Ligand Sites</scene> are highlighted here.
 +
 
 +
<scene name='75/751161/Basic_positive_residues/2'>Basic and Positive Residues</scene> which play a crucial role in binding to the ribosome during translation.

Current revision

Contents

genetics is ok

'Molecules it Interacts With and where '

The protein binds to GDP as well as the following ligands in order to promote the attachment of the protein complex to the ribosome A site.

PHOSHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER


PHENYLALANINE MAGNESIUM ION


'Origin'

It has domains that are created in yeast (phenyl-transfer RNA) , in the heat resistant Thermus aquaticus (EF-Tu elongation factor, and can be synthetically manufactured.


'Structure'

It has 3 domains. G proteins, Elongation Factors, and the EF-Tu/eEF-1alpha/eIF2-gamma C-terminal domain. It is composed of 6 chains, which combine in alignment.


Specific are highlighted here. The ligands listed above, GDP, Phe, and Mg+2 ion each attach at these locations which are still being explored.

which play a crucial role in binding to the ribosome during translation. They form positive pockets with which negative amino acids can bind to.

'Molecules it Interacts With and where '

The protein binds to GDP as well as the following ligands in order to promote the attachment of the protein complex to the ribosome A site.

PHOSHOAMINOPHOSPHONIC ACID-GUANYLATE ESTER


PHENYLALANINE MAGNESIUM ION


'Origin'

It has domains that are created in yeast (phenyl-transfer RNA) , in the heat resistant Thermus aquaticus (EF-Tu elongation factor, and can be synthetically manufactured.


'Structure'

It has 3 domains. G proteins, Elongation Factors, and the EF-Tu/eEF-1alpha/eIF2-gamma C-terminal domain. It is composed of 6 chains, which combine in alignment.


Specific are highlighted here.

which play a crucial role in binding to the ribosome during translation.

'Function"

The protein complex participates in placing the amino acids in their correct order when messenger RNA is translated into a protein sequence on the ribosome by promoting GTP-dependent binding of tRNA to the A site of the ribosome. In other words, it is involved with elongation during polypeptide synthesis.

Phe-tRNA, elongation factor EF-TU:GDPNP Ternary complex

Drag the structure with the mouse to rotate
Personal tools