|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Apaf-1-Caspase-9 holoenzyme== | | ==Apaf-1-Caspase-9 holoenzyme== |
- | <StructureSection load='5wve' size='340' side='right' caption='[[5wve]], [[Resolution|resolution]] 4.40Å' scene=''> | + | <SX load='5wve' size='340' side='right' viewer='molstar' caption='[[5wve]], [[Resolution|resolution]] 4.40Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5wve]] is a 25 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5WVE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5WVE FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5wve]] is a 25 chain structure with sequence from [http://en.wikipedia.org/wiki/Equus_caballus Equus caballus] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5WVE OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5WVE FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DTP:2-DEOXYADENOSINE+5-TRIPHOSPHATE'>DTP</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DTP:2-DEOXYADENOSINE+5-TRIPHOSPHATE'>DTP</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5wve FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5wve OCA], [http://pdbe.org/5wve PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5wve RCSB], [http://www.ebi.ac.uk/pdbsum/5wve PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5wve ProSAT]</span></td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">APAF1, KIAA0413 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), CYCS, CYC ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9796 Equus caballus])</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5wve FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5wve OCA], [http://pdbe.org/5wve PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5wve RCSB], [http://www.ebi.ac.uk/pdbsum/5wve PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5wve ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
Line 18: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 5wve" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 5wve" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Apoptotic protease-activating factor-1 3D structures|Apoptotic protease-activating factor-1 3D structures]] |
| + | *[[Caspase 3D structures|Caspase 3D structures]] |
| + | *[[Cytochrome C 3D structures|Cytochrome C 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
- | </StructureSection> | + | </SX> |
| + | [[Category: Equus caballus]] |
| + | [[Category: Human]] |
| + | [[Category: Large Structures]] |
| [[Category: Hu, Q]] | | [[Category: Hu, Q]] |
| [[Category: Li, Y]] | | [[Category: Li, Y]] |
| Structural highlights
Function
[APAF_HUMAN] Oligomeric Apaf-1 mediates the cytochrome c-dependent autocatalytic activation of pro-caspase-9 (Apaf-3), leading to the activation of caspase-3 and apoptosis. This activation requires ATP. Isoform 6 is less effective in inducing apoptosis.[1] [2] [CYC_HORSE] Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. Plays a role in apoptosis. Suppression of the anti-apoptotic members or activation of the pro-apoptotic members of the Bcl-2 family leads to altered mitochondrial membrane permeability resulting in release of cytochrome c into the cytosol. Binding of cytochrome c to Apaf-1 triggers the activation of caspase-9, which then accelerates apoptosis by activating other caspases (By similarity).
Publication Abstract from PubMed
Mammalian intrinsic apoptosis requires activation of the initiator caspase-9, which then cleaves and activates the effector caspases to execute cell killing. The heptameric Apaf-1 apoptosome is indispensable for caspase-9 activation by together forming a holoenzyme. The molecular mechanism of caspase-9 activation remains largely enigmatic. Here, we report the cryoelectron microscopy (cryo-EM) structure of an apoptotic holoenzyme and structure-guided biochemical analyses. The caspase recruitment domains (CARDs) of Apaf-1 and caspase-9 assemble in two different ways: a 4:4 complex docks onto the central hub of the apoptosome, and a 2:1 complex binds the periphery of the central hub. The interface between the CARD complex and the central hub is required for caspase-9 activation within the holoenzyme. Unexpectedly, the CARD of free caspase-9 strongly inhibits its proteolytic activity. These structural and biochemical findings demonstrate that the apoptosome activates caspase-9 at least in part through sequestration of the inhibitory CARD domain.
Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme.,Li Y, Zhou M, Hu Q, Bai XC, Huang W, Scheres SH, Shi Y Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1542-1547. doi:, 10.1073/pnas.1620626114. Epub 2017 Jan 31. PMID:28143931[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Hu Y, Benedict MA, Ding L, Nunez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 1999 Jul 1;18(13):3586-95. PMID:10393175 doi:10.1093/emboj/18.13.3586
- ↑ Ogawa T, Shiga K, Hashimoto S, Kobayashi T, Horii A, Furukawa T. APAF-1-ALT, a novel alternative splicing form of APAF-1, potentially causes impeded ability of undergoing DNA damage-induced apoptosis in the LNCaP human prostate cancer cell line. Biochem Biophys Res Commun. 2003 Jun 27;306(2):537-43. PMID:12804598
- ↑ Li Y, Zhou M, Hu Q, Bai XC, Huang W, Scheres SH, Shi Y. Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1542-1547. doi:, 10.1073/pnas.1620626114. Epub 2017 Jan 31. PMID:28143931 doi:http://dx.doi.org/10.1073/pnas.1620626114
|