5n2w

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: '''Unreleased structure''' The entry 5n2w is ON HOLD Authors: Description: Category: Unreleased Structures)
Current revision (17:59, 8 November 2023) (edit) (undo)
 
(5 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 5n2w is ON HOLD
+
==WT-Parkin and pUB complex==
 +
<StructureSection load='5n2w' size='340' side='right'caption='[[5n2w]], [[Resolution|resolution]] 2.68&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5n2w]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5N2W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5N2W FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.68&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3CN:3-AMINOPROPANE'>3CN</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene>, <scene name='pdbligand=TMO:TRIMETHYLAMINE+OXIDE'>TMO</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5n2w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5n2w OCA], [https://pdbe.org/5n2w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5n2w RCSB], [https://www.ebi.ac.uk/pdbsum/5n2w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5n2w ProSAT]</span></td></tr>
 +
</table>
 +
== Disease ==
 +
[https://www.uniprot.org/uniprot/PRKN_HUMAN PRKN_HUMAN] Young adult-onset Parkinsonism. Disease susceptibility may be associated with variations affecting the gene represented in this entry. Heterozygous mutations act as susceptibility alleles for late-onset Parkinson disease (PubMed:12730996 and PubMed:12629236). The disease is caused by mutations affecting the gene represented in this entry. Defects in PRKN may be involved in the development and/or progression of ovarian cancer.
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/PRKN_HUMAN PRKN_HUMAN] Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins, such as BCL2, SYT11, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPT5, TOMM20, USP30, ZNF746 and AIMP2 (PubMed:10973942, PubMed:10888878, PubMed:11431533, PubMed:12150907, PubMed:12628165, PubMed:16135753, PubMed:21376232, PubMed:23754282, PubMed:23620051, PubMed:24660806, PubMed:24751536). Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context (PubMed:19229105, PubMed:20889974, PubMed:25621951). Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of misfolded proteins such as PARK7: 'Lys-63'-linked polyubiquitinated misfolded proteins are then recognized by HDAC6, leading to their recruitment to aggresomes, followed by degradation (PubMed:17846173, PubMed:19229105). Mediates 'Lys-63'-linked polyubiquitination of a 22 kDa O-linked glycosylated isoform of SNCAIP, possibly playing a role in Lewy-body formation (PubMed:11590439, PubMed:11431533, PubMed:19229105, PubMed:11590439, PubMed:15728840). Mediates monoubiquitination of BCL2, thereby acting as a positive regulator of autophagy (PubMed:20889974). Promotes the autophagic degradation of dysfunctional depolarized mitochondria (mitophagy) by promoting the ubiquitination of mitochondrial proteins such as TOMM20, RHOT1/MIRO1 and USP30 (PubMed:19029340, PubMed:19966284, PubMed:23620051, PubMed:24896179, PubMed:25527291). Preferentially assembles 'Lys-6'-, 'Lys-11'- and 'Lys-63'-linked polyubiquitin chains following mitochondrial damage, leading to mitophagy (PubMed:25621951). Mediates 'Lys-48'-linked polyubiquitination of ZNF746, followed by degradation of ZNF746 by the proteasome; possibly playing a role in the regulation of neuron death (PubMed:21376232). Limits the production of reactive oxygen species (ROS). Regulates cyclin-E during neuronal apoptosis. In collaboration with CHPF isoform 2, may enhance cell viability and protect cells from oxidative stress (PubMed:22082830). Independently of its ubiquitin ligase activity, protects from apoptosis by the transcriptional repression of p53/TP53 (PubMed:19801972). May protect neurons against alpha synuclein toxicity, proteasomal dysfunction, GPR37 accumulation, and kainate-induced excitotoxicity (PubMed:11439185). May play a role in controlling neurotransmitter trafficking at the presynaptic terminal and in calcium-dependent exocytosis. May represent a tumor suppressor gene.<ref>PMID:10888878</ref> <ref>PMID:10973942</ref> <ref>PMID:11431533</ref> <ref>PMID:11590439</ref> <ref>PMID:12628165</ref> <ref>PMID:12719539</ref> <ref>PMID:15105460</ref> <ref>PMID:15728840</ref> <ref>PMID:16135753</ref> <ref>PMID:17846173</ref> <ref>PMID:18541373</ref> <ref>PMID:19029340</ref> <ref>PMID:19229105</ref> <ref>PMID:19801972</ref> <ref>PMID:19966284</ref> <ref>PMID:20889974</ref> <ref>PMID:21376232</ref> <ref>PMID:21532592</ref> <ref>PMID:22082830</ref> <ref>PMID:23620051</ref> <ref>PMID:23754282</ref> <ref>PMID:23933751</ref> <ref>PMID:24660806</ref> <ref>PMID:24751536</ref> <ref>PMID:24784582</ref> <ref>PMID:24896179</ref> <ref>PMID:25527291</ref> <ref>PMID:25621951</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
RING-between-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR ligase is Parkin, mutations in which lead to early-onset hereditary Parkinsonism. Parkin and other RBR ligases share a catalytic RBR module but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during Parkin activation. However, current data on active RBR ligases reflect the absence of regulatory domains. Therefore, it remains unclear how individual RBR ligases are activated, and whether they share a common mechanism. We now report the crystal structure of a human Parkin-phosphoubiquitin complex, which shows that phosphoubiquitin binding induces movement in the 'in-between RING' (IBR) domain to reveal a cryptic ubiquitin-binding site. Mutation of this site negatively affects Parkin's activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, which suggests a role for interdomain association in the RBR ligase mechanism.
-
Authors:
+
Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity.,Kumar A, Chaugule VK, Condos TEC, Barber KR, Johnson C, Toth R, Sundaramoorthy R, Knebel A, Shaw GS, Walden H Nat Struct Mol Biol. 2017 Apr 17. doi: 10.1038/nsmb.3400. PMID:28414322<ref>PMID:28414322</ref>
-
Description:
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
 +
<div class="pdbe-citations 5n2w" style="background-color:#fffaf0;"></div>
 +
 
 +
==See Also==
 +
*[[Ubiquitin protein ligase 3D structures|Ubiquitin protein ligase 3D structures]]
 +
*[[3D structures of ubiquitin|3D structures of ubiquitin]]
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Homo sapiens]]
 +
[[Category: Large Structures]]
 +
[[Category: Chaugule VK]]
 +
[[Category: Johnson C]]
 +
[[Category: Knebel A]]
 +
[[Category: Kumar A]]
 +
[[Category: Sundaramoorthy R]]
 +
[[Category: Toth R]]
 +
[[Category: Walden H]]

Current revision

WT-Parkin and pUB complex

PDB ID 5n2w

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools