5v2v
From Proteopedia
(Difference between revisions)
(New page: '''Unreleased structure''' The entry 5v2v is ON HOLD until Paper Publication Authors: Description: Category: Unreleased Structures) |
|||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Ethylene forming enzyme in complex with nickel== | |
+ | <StructureSection load='5v2v' size='340' side='right'caption='[[5v2v]], [[Resolution|resolution]] 3.04Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[5v2v]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_savastanoi_pv._phaseolicola Pseudomonas savastanoi pv. phaseolicola]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5V2V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5V2V FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.04Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5v2v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5v2v OCA], [https://pdbe.org/5v2v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5v2v RCSB], [https://www.ebi.ac.uk/pdbsum/5v2v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5v2v ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/EFE_PSESH EFE_PSESH] Simultaneously catalyzes two reactions, namely formation of ethylene and of succinate from 2-oxoglutarate, with a molar ratio of 2:1.<ref>PMID:1445291</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The ethylene-forming enzyme (EFE) from Pseudomonas syringae pv. phaseolicola PK2 is a member of the mononuclear non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenase superfamily. EFE converts 2OG into ethylene plus three CO2 molecules while also catalyzing the C5 hydroxylation of L-arginine (L-Arg) driven by the oxidative decarboxylation of 2OG to form succinate and CO2. Here we report eleven X-ray crystal structures of EFE that provide insight into the mechanisms of these two reactions. Binding of 2OG in the absence of L-Arg resulted in predominantly monodentate metal coordination, distinct from the typical bidentate metal-binding species observed in other family members. Subsequent addition of L-Arg resulted in compression of the active site, a conformational change of the carboxylate side chain metal ligand to allow for hydrogen bonding with the substrate, and creation of a twisted peptide bond involving this carboxylate and the following tyrosine residue. A reconfiguration of 2OG achieves bidentate metal coordination. The dioxygen binding site is located on the metal face opposite to that facing L-Arg, thus requiring reorientation of the generated ferryl species to catalyze L-Arg hydroxylation. Notably, a phenylalanyl side chain pointing towards the metal may hinder such a ferryl flip and promote ethylene formation. Extensive site-directed mutagenesis studies supported the importance of this phenylalanine and confirmed the essential residues used for substrate binding and catalysis. The structural and functional characterization described here suggests that conversion of 2OG to ethylene, atypical among Fe(II)/2OG oxygenases, is facilitated by the binding of L-Arg which leads to an altered positioning of the carboxylate metal ligand, a resulting twisted peptide bond, and the off-line geometry for dioxygen coordination. | ||
- | + | Structures and Mechanisms of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme: Substrate Binding Creates a Twist.,Martinez S, Fellner M, Herr CQ, Ritchie A, Hu J, Hausinger RP J Am Chem Soc. 2017 Aug 5. doi: 10.1021/jacs.7b06186. PMID:28780854<ref>PMID:28780854</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
+ | <div class="pdbe-citations 5v2v" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Pseudomonas savastanoi pv. phaseolicola]] | ||
+ | [[Category: Fellner M]] | ||
+ | [[Category: Hausinger RP]] | ||
+ | [[Category: Hu J]] | ||
+ | [[Category: Martinez S]] |
Current revision
Ethylene forming enzyme in complex with nickel
|