5nrk

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "5nrk" [edit=sysop:move=sysop])
Current revision (12:04, 22 November 2023) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 5nrk is ON HOLD
+
==Crystal structure of the sixth cohesin from Acetivibrio cellulolyticus' scaffoldin B in complex with Cel5 dockerin S15I, I16N mutant==
 +
<StructureSection load='5nrk' size='340' side='right'caption='[[5nrk]], [[Resolution|resolution]] 1.45&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5nrk]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Acetivibrio_cellulolyticus Acetivibrio cellulolyticus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NRK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5NRK FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.45&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SCN:THIOCYANATE+ION'>SCN</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5nrk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5nrk OCA], [https://pdbe.org/5nrk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5nrk RCSB], [https://www.ebi.ac.uk/pdbsum/5nrk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5nrk ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/Q9RPL0_9FIRM Q9RPL0_9FIRM]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The cellulosome is a remarkably intricate multienzyme nanomachine produced by anaerobic bacteria to degrade plant cell wall polysaccharides. Cellulosome assembly is mediated through binding of enzyme-borne dockerin modules to cohesin modules of the primary scaffoldin subunit. The anaerobic bacterium Acetivibrio cellulolyticus produces a highly intricate cellulosome comprising an adaptor scaffoldin, ScaB, whose cohesins interact with the dockerin of the primary scaffoldin (ScaA) that integrates the cellulosomal enzymes. The ScaB dockerin selectively binds to cohesin modules in ScaC that anchors the cellulosome onto the cell surface. Correct cellulosome assembly requires distinct specificities displayed by structurally related type I cohesin-dockerin pairs that mediate ScaC-ScaB and ScaA-enzyme assemblies. To explore the mechanism by which these two critical protein interactions display their required specificities, we determined the crystal structure of the dockerin of a cellulosomal enzyme in complex with a ScaA cohesin. The data revealed that the enzyme-borne dockerin binds to the ScaA cohesin in two orientations, indicating two identical cohesin-binding sites. Combined mutagenesis experiments served to identify amino acid residues that modulate type I cohesin-dockerin specificity in A. cellulolyticus. Rational design was used to test the hypothesis that the ligand-binding surfaces of ScaA- and ScaB-associated dockerins mediate cohesin recognition, independent of the structural scaffold. Novel specificities could thus be engineered into one, but not both of the ligand-binding sites of ScaB, while attempts at manipulating the specificity of the enzyme-associated dockerin were unsuccessful. These data indicate that dockerin specificity requires critical interplay between the ligand-binding surface and the structural scaffold of these modules.
-
Authors: Bule, P., Najmudin, S., Fontes, C.M.G.A., Alves, V.D.
+
Structure-function analyses generate novel specificities to assemble the components of multi-enzyme bacterial cellulosome complexes.,Bule P, Cameron K, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Bayer EA, Najmudin S, Fontes CMGA, Alves VD J Biol Chem. 2018 Jan 24. pii: RA117.001241. doi: 10.1074/jbc.RA117.001241. PMID:29367338<ref>PMID:29367338</ref>
-
Description: Crystal structure of the sixth cohesin from Acetivibrio cellulolyticus' scaffoldin B in complex with Cel5 dockerin S15I, I16N mutant
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
-
[[Category: Alves, V.D]]
+
<div class="pdbe-citations 5nrk" style="background-color:#fffaf0;"></div>
-
[[Category: Najmudin, S]]
+
== References ==
-
[[Category: Bule, P]]
+
<references/>
-
[[Category: Fontes, C.M.G.A]]
+
__TOC__
 +
</StructureSection>
 +
[[Category: Acetivibrio cellulolyticus]]
 +
[[Category: Large Structures]]
 +
[[Category: Alves VD]]
 +
[[Category: Bule P]]
 +
[[Category: Fontes CMGA]]
 +
[[Category: Najmudin S]]

Current revision

Crystal structure of the sixth cohesin from Acetivibrio cellulolyticus' scaffoldin B in complex with Cel5 dockerin S15I, I16N mutant

PDB ID 5nrk

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools