|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of Caulobacter crescentus ProXp-ala at 1.69 Angstrom== | | ==Crystal structure of Caulobacter crescentus ProXp-ala at 1.69 Angstrom== |
- | <StructureSection load='5vxb' size='340' side='right' caption='[[5vxb]], [[Resolution|resolution]] 1.69Å' scene=''> | + | <StructureSection load='5vxb' size='340' side='right'caption='[[5vxb]], [[Resolution|resolution]] 1.69Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5vxb]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VXB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5VXB FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5vxb]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Caulobacter_vibrioides_CB15 Caulobacter vibrioides CB15]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VXB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5VXB FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1vjf|1vjf]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.69Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5vxb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vxb OCA], [http://pdbe.org/5vxb PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5vxb RCSB], [http://www.ebi.ac.uk/pdbsum/5vxb PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5vxb ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5vxb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vxb OCA], [https://pdbe.org/5vxb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5vxb RCSB], [https://www.ebi.ac.uk/pdbsum/5vxb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5vxb ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q9ABV9_CAUVC Q9ABV9_CAUVC] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 20: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Foster, M P]] | + | [[Category: Caulobacter vibrioides CB15]] |
- | [[Category: Ma, X]] | + | [[Category: Large Structures]] |
- | [[Category: Musier-Forsyth, K]] | + | [[Category: Foster MP]] |
- | [[Category: Nakanishi, K]] | + | [[Category: Ma X]] |
- | [[Category: Rna binding protein]] | + | [[Category: Musier-Forsyth K]] |
- | [[Category: Trna trans-editing domain]] | + | [[Category: Nakanishi K]] |
| Structural highlights
Function
Q9ABV9_CAUVC
Publication Abstract from PubMed
Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary alpha-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups.
Conformational and chemical selection by a trans-acting editing domain.,Danhart EM, Bakhtina M, Cantara WA, Kuzmishin AB, Ma X, Sanford BL, Kosutic M, Goto Y, Suga H, Nakanishi K, Micura R, Foster MP, Musier-Forsyth K Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6774-E6783. doi:, 10.1073/pnas.1703925114. Epub 2017 Aug 2. PMID:28768811[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Danhart EM, Bakhtina M, Cantara WA, Kuzmishin AB, Ma X, Sanford BL, Kosutic M, Goto Y, Suga H, Nakanishi K, Micura R, Foster MP, Musier-Forsyth K. Conformational and chemical selection by a trans-acting editing domain. Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6774-E6783. doi:, 10.1073/pnas.1703925114. Epub 2017 Aug 2. PMID:28768811 doi:http://dx.doi.org/10.1073/pnas.1703925114
|