5wi2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: '''Unreleased structure''' The entry 5wi2 is ON HOLD until Paper Publication Authors: Description: Category: Unreleased Structures)
Current revision (14:13, 4 October 2023) (edit) (undo)
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 5wi2 is ON HOLD until Paper Publication
+
==Crystal structure of the KA1 domain from human Chk1==
 +
<StructureSection load='5wi2' size='340' side='right'caption='[[5wi2]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5wi2]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5WI2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5WI2 FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.495&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5wi2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5wi2 OCA], [https://pdbe.org/5wi2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5wi2 RCSB], [https://www.ebi.ac.uk/pdbsum/5wi2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5wi2 ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/CHK1_HUMAN CHK1_HUMAN] Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest and activation of DNA repair in response to the presence of DNA damage or unreplicated DNA. May also negatively regulate cell cycle progression during unperturbed cell cycles. This regulation is achieved by a number of mechanisms that together help to preserve the integrity of the genome. Recognizes the substrate consensus sequence [R-X-X-S/T]. Binds to and phosphorylates CDC25A, CDC25B and CDC25C. Phosphorylation of CDC25A at 'Ser-178' and 'Thr-507' and phosphorylation of CDC25C at 'Ser-216' creates binding sites for 14-3-3 proteins which inhibit CDC25A and CDC25C. Phosphorylation of CDC25A at 'Ser-76', 'Ser-124', 'Ser-178', 'Ser-279' and 'Ser-293' promotes proteolysis of CDC25A. Phosphorylation of CDC25A at 'Ser-76' primes the protein for subsequent phosphorylation at 'Ser-79', 'Ser-82' and 'Ser-88' by NEK11, which is required for polyubiquitination and degradation of CDCD25A. Inhibition of CDC25 leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. Also phosphorylates NEK6. Binds to and phosphorylates RAD51 at 'Thr-309', which promotes the release of RAD51 from BRCA2 and enhances the association of RAD51 with chromatin, thereby promoting DNA repair by homologous recombination. Phosphorylates multiple sites within the C-terminus of TP53, which promotes activation of TP53 by acetylation and promotes cell cycle arrest and suppression of cellular proliferation. Also promotes repair of DNA cross-links through phosphorylation of FANCE. Binds to and phosphorylates TLK1 at 'Ser-743', which prevents the TLK1-dependent phosphorylation of the chromatin assembly factor ASF1A. This may enhance chromatin assembly both in the presence or absence of DNA damage. May also play a role in replication fork maintenance through regulation of PCNA. May regulate the transcription of genes that regulate cell-cycle progression through the phosphorylation of histones. Phosphorylates histone H3.1 (to form H3T11ph), which leads to epigenetic inhibition of a subset of genes. May also phosphorylate RB1 to promote its interaction with the E2F family of transcription factors and subsequent cell cycle arrest.<ref>PMID:9278511</ref> <ref>PMID:10673501</ref> <ref>PMID:11535615</ref> <ref>PMID:12446774</ref> <ref>PMID:12399544</ref> <ref>PMID:12676583</ref> <ref>PMID:12660173</ref> <ref>PMID:14681206</ref> <ref>PMID:12676925</ref> <ref>PMID:12759351</ref> <ref>PMID:14559997</ref> <ref>PMID:14988723</ref> <ref>PMID:15311285</ref> <ref>PMID:15659650</ref> <ref>PMID:15665856</ref> <ref>PMID:15650047</ref> <ref>PMID:16511572</ref> <ref>PMID:16963448</ref> <ref>PMID:17380128</ref> <ref>PMID:17296736</ref> <ref>PMID:18510930</ref> <ref>PMID:18728393</ref> <ref>PMID:18451105</ref> <ref>PMID:18317453</ref> <ref>PMID:19734889</ref> <ref>PMID:20090422</ref> Isoform 2: Endogenous repressor of isoform 1, interacts with, and antagonizes CHK1 to promote the S to G2/M phase transition.<ref>PMID:9278511</ref> <ref>PMID:10673501</ref> <ref>PMID:11535615</ref> <ref>PMID:12446774</ref> <ref>PMID:12399544</ref> <ref>PMID:12676583</ref> <ref>PMID:12660173</ref> <ref>PMID:14681206</ref> <ref>PMID:12676925</ref> <ref>PMID:12759351</ref> <ref>PMID:14559997</ref> <ref>PMID:14988723</ref> <ref>PMID:15311285</ref> <ref>PMID:15659650</ref> <ref>PMID:15665856</ref> <ref>PMID:15650047</ref> <ref>PMID:16511572</ref> <ref>PMID:16963448</ref> <ref>PMID:17380128</ref> <ref>PMID:17296736</ref> <ref>PMID:18510930</ref> <ref>PMID:18728393</ref> <ref>PMID:18451105</ref> <ref>PMID:18317453</ref> <ref>PMID:19734889</ref> <ref>PMID:20090422</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Precise control of the cell cycle allows for timely repair of genetic material prior to replication. One factor intimately involved in this process is Chk1, a DNA damage repair inducing Ser/Thr protein kinase that contains an N-terminal kinase domain and a C-terminal regulatory region consisting of a ~100-residue linker followed by a putative kinase associated-1 (KA1) domain. We report the crystal structure of the human Chk1 KA1 domain, demonstrating striking structural homology with other sequentially diverse KA1 domains. Separately purified Chk1 kinase and KA1 domains are intimately associated in solution, which results in inhibition of Chk1 kinase activity. Using truncation mutants and site-directed mutagenesis, we define the inhibitory face of the KA1 domain as a series of basic residues residing on two conserved regions of the primary structure. These findings define the molecular basis for KA1- mediated intramolecular autoinhibition as a key regulatory mechanism of human Chk1, and provides new therapeutic possibilities with which to attack this validated oncology target with small-molecules.
-
Authors:
+
Intramolecular autoinhibition of Checkpoint Kinase 1 is mediated by conserved basic motifs of the C-terminal Kinase Associated-1 domain.,Emptage RP, Schoenberger MJ, Ferguson KM, Marmorstein R J Biol Chem. 2017 Sep 25. pii: jbc.M117.811265. doi: 10.1074/jbc.M117.811265. PMID:28972186<ref>PMID:28972186</ref>
-
Description:
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
 +
<div class="pdbe-citations 5wi2" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Homo sapiens]]
 +
[[Category: Large Structures]]
 +
[[Category: Emptage RP]]
 +
[[Category: Marmorstein R]]

Current revision

Crystal structure of the KA1 domain from human Chk1

PDB ID 5wi2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools