5ybi

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: '''Unreleased structure''' The entry 5ybi is ON HOLD until Paper Publication Authors: Mu, Z.X., Gao, X.P., Cui, S. Description: Structure of the bacterial pathogens ATPase with substra...)
Current revision (08:25, 22 November 2023) (edit) (undo)
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 5ybi is ON HOLD until Paper Publication
+
==Structure of the bacterial pathogens ATPase with substrate AMPPNP==
 +
<StructureSection load='5ybi' size='340' side='right'caption='[[5ybi]], [[Resolution|resolution]] 2.27&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5ybi]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Shigella_flexneri Shigella flexneri]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5YBI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5YBI FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.268&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ybi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ybi OCA], [https://pdbe.org/5ybi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ybi RCSB], [https://www.ebi.ac.uk/pdbsum/5ybi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ybi ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/SCTN_SHIFL SCTN_SHIFL] ATPase component of the type III secretion system (T3SS), also called injectisome, which is used to inject bacterial effector proteins into eukaryotic host cells (PubMed:26947936, PubMed:27770024, PubMed:29595954). Acts as a molecular motor to provide the energy that is required for the export of proteins (Probable). Required for type III secretion apparatus (T3SA) formation, proper protein secretion, host cell invasion and virulence (PubMed:26947936, PubMed:27770024, PubMed:31162724). May play a critical role in T3SS substrate recognition, disassembly of the effector/chaperone complex and unfolding of the effector in an ATP-dependent manner prior to secretion (By similarity).[UniProtKB:P0A1B9]<ref>PMID:26947936</ref> <ref>PMID:27770024</ref> <ref>PMID:29595954</ref> <ref>PMID:31162724</ref> <ref>PMID:26947936</ref> <ref>PMID:27770024</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Gram-negative bacteria utilize the type III secretion system (T3SS) to inject effector proteins into the host cell cytoplasm, where they subvert cellular functions and assist pathogen invasion. The conserved type III-associated ATPase is critical for the separation of chaperones from effector proteins, the unfolding of effector proteins and translocating them through the narrow channel of the secretion apparatus. However, how ATP hydrolysis is coupled to the mechanical work of the enzyme remains elusive. Herein, we present a complete description of nucleoside triphosphate binding by surface presentation antigens 47 (Spa47) from Shigella flexneri, based on crystal structures containing ATPgammaS, a catalytic magnesium ion and an ordered water molecule. Combining the crystal structures of Spa47-ATPgammaS and unliganded Spa47, we propose conformational changes in Spa47 associated with ATP binding, the binding of ATP induces a conformational change of a highly conserved luminal loop, facilitating ATP hydrolysis by the Spa47 ATPase. Additionally, we identified a specific hydrogen bond critical for ATP recognition and demonstrated that, while ATPgammaS is an ideal analog for probing ATP binding, AMPPNP is a poor ATP mimic. Our findings provide structural insight pertinent for inhibitor design.
-
Authors: Mu, Z.X., Gao, X.P., Cui, S.
+
Structural Insight Into Conformational Changes Induced by ATP Binding in a Type III Secretion-Associated ATPase From Shigella flexneri.,Gao X, Mu Z, Yu X, Qin B, Wojdyla J, Wang M, Cui S Front Microbiol. 2018 Jul 2;9:1468. doi: 10.3389/fmicb.2018.01468. eCollection, 2018. PMID:30013545<ref>PMID:30013545</ref>
-
Description: Structure of the bacterial pathogens ATPase with substrate AMPPNP
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
-
[[Category: Gao, X.P]]
+
<div class="pdbe-citations 5ybi" style="background-color:#fffaf0;"></div>
-
[[Category: Cui, S]]
+
== References ==
-
[[Category: Mu, Z.X]]
+
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Large Structures]]
 +
[[Category: Shigella flexneri]]
 +
[[Category: Cui S]]
 +
[[Category: Gao XP]]
 +
[[Category: Mu ZX]]

Current revision

Structure of the bacterial pathogens ATPase with substrate AMPPNP

PDB ID 5ybi

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools