|
|
(15 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | [[Image:1y3j.gif|left|200px]] | |
| | | |
- | {{Structure
| + | ==Solution structure of the copper(I) form of the fifth domain of Menkes protein== |
- | |PDB= 1y3j |SIZE=350|CAPTION= <scene name='initialview01'>1y3j</scene>
| + | <StructureSection load='1y3j' size='340' side='right'caption='[[1y3j]]' scene=''> |
- | |SITE=
| + | == Structural highlights == |
- | |LIGAND= <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>
| + | <table><tr><td colspan='2'>[[1y3j]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Y3J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1Y3J FirstGlance]. <br> |
- | |ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Copper-exporting_ATPase Copper-exporting ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.4 3.6.3.4] </span>
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
- | |GENE= ATP7A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene></td></tr> |
- | |DOMAIN= | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1y3j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1y3j OCA], [https://pdbe.org/1y3j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1y3j RCSB], [https://www.ebi.ac.uk/pdbsum/1y3j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1y3j ProSAT]</span></td></tr> |
- | |RELATEDENTRY=[[1y3k|1Y3K]]
| + | </table> |
- | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1y3j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1y3j OCA], [http://www.ebi.ac.uk/pdbsum/1y3j PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1y3j RCSB]</span>
| + | == Disease == |
- | }}
| + | [https://www.uniprot.org/uniprot/ATP7A_HUMAN ATP7A_HUMAN] Defects in ATP7A are the cause of Menkes disease (MNKD) [MIM:[https://omim.org/entry/309400 309400]; also known as kinky hair disease. MNKD is an X-linked recessive disorder of copper metabolism characterized by generalized copper deficiency. MNKD results in progressive neurodegeneration and connective-tissue disturbances: focal cerebral and cerebellar degeneration, early growth retardation, peculiar hair, hypopigmentation, cutis laxa, vascular complications and death in early childhood. The clinical features result from the dysfunction of several copper-dependent enzymes.<ref>PMID:10079817</ref> <ref>PMID:7977350</ref> <ref>PMID:8981948</ref> <ref>PMID:10401004</ref> <ref>PMID:10319589</ref> <ref>PMID:11241493</ref> <ref>PMID:11350187</ref> <ref>PMID:15981243</ref> <ref>PMID:22992316</ref> Defects in ATP7A are the cause of occipital horn syndrome (OHS) [MIM:[https://omim.org/entry/304150 304150]; also known as X-linked cutis laxa. OHS is an X-linked recessive disorder of copper metabolism. Common features are unusual facial appearance, skeletal abnormalities, chronic diarrhea and genitourinary defects. The skeletal abnormalities included occipital horns, short, broad clavicles, deformed radii, ulnae and humeri, narrowing of the rib cage, undercalcified long bones with thin cortical walls and coxa valga.<ref>PMID:9246006</ref> <ref>PMID:17108763</ref> Defects in ATP7A are a cause of distal spinal muscular atrophy X-linked type 3 (DSMAX3) [MIM:[https://omim.org/entry/300489 300489]. DSMAX3 is a neuromuscular disorder. Distal spinal muscular atrophy, also known as distal hereditary motor neuronopathy, represents a heterogeneous group of neuromuscular disorders caused by selective degeneration of motor neurons in the anterior horn of the spinal cord, without sensory deficit in the posterior horn. The overall clinical picture consists of a classical distal muscular atrophy syndrome in the legs without clinical sensory loss. The disease starts with weakness and wasting of distal muscles of the anterior tibial and peroneal compartments of the legs. Later on, weakness and atrophy may expand to the proximal muscles of the lower limbs and/or to the distal upper limbs.<ref>PMID:20170900</ref> |
- | | + | == Function == |
- | '''Solution structure of the copper(I) form of the fifth domain of Menkes protein'''
| + | [https://www.uniprot.org/uniprot/ATP7A_HUMAN ATP7A_HUMAN] May supply copper to copper-requiring proteins within the secretory pathway, when localized in the trans-Golgi network. Under conditions of elevated extracellular copper, it relocalized to the plasma membrane where it functions in the efflux of copper from cells. |
- | | + | == Evolutionary Conservation == |
- | | + | [[Image:Consurf_key_small.gif|200px|right]] |
- | ==Overview== | + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/y3/1y3j_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1y3j ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| The interaction between the human copper(I) chaperone, HAH1, and one of its two physiological partners, the Menkes disease protein (ATP7A), was investigated in solution using heteronuclear NMR. The study was carried out through titrations involving HAH1 and either the second or the fifth soluble domains of ATP7A (MNK2 and MNK5, respectively), in the presence of copper(I). The copper-transfer properties of MNK2 and MNK5 are similar, and differ significantly from those previously observed for the yeast homologous system. In particular, no stable adduct is formed between either of the MNK domains and HAH1. The copper(I) transfer reaction is slow on the time scale of the NMR chemical shift, and the equilibrium is significantly shifted towards the formation of copper(I)-MNK2/MNK5. The solution structures of both apo- and copper(I)-MNK5, which were not available, are also reported. The results are discussed in comparison with the data available in the literature for the interaction between HAH1 and its partners from other spectroscopic techniques. | | The interaction between the human copper(I) chaperone, HAH1, and one of its two physiological partners, the Menkes disease protein (ATP7A), was investigated in solution using heteronuclear NMR. The study was carried out through titrations involving HAH1 and either the second or the fifth soluble domains of ATP7A (MNK2 and MNK5, respectively), in the presence of copper(I). The copper-transfer properties of MNK2 and MNK5 are similar, and differ significantly from those previously observed for the yeast homologous system. In particular, no stable adduct is formed between either of the MNK domains and HAH1. The copper(I) transfer reaction is slow on the time scale of the NMR chemical shift, and the equilibrium is significantly shifted towards the formation of copper(I)-MNK2/MNK5. The solution structures of both apo- and copper(I)-MNK5, which were not available, are also reported. The results are discussed in comparison with the data available in the literature for the interaction between HAH1 and its partners from other spectroscopic techniques. |
| | | |
- | ==Disease==
| + | An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein.,Banci L, Bertini I, Ciofi-Baffoni S, Chasapis CT, Hadjiliadis N, Rosato A FEBS J. 2005 Feb;272(3):865-71. PMID:15670166<ref>PMID:15670166</ref> |
- | Known disease associated with this structure: Cutis laxa, neonatal OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=300011 300011]], Menkes disease OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=300011 300011]], Occipital horn syndrome OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=300011 300011]]
| + | |
| | | |
- | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | 1Y3J is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Y3J OCA].
| + | </div> |
| + | <div class="pdbe-citations 1y3j" style="background-color:#fffaf0;"></div> |
| | | |
- | ==Reference== | + | ==See Also== |
- | An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein., Banci L, Bertini I, Ciofi-Baffoni S, Chasapis CT, Hadjiliadis N, Rosato A, FEBS J. 2005 Feb;272(3):865-71. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15670166 15670166]
| + | *[[ATPase 3D structures|ATPase 3D structures]] |
- | [[Category: Copper-exporting ATPase]] | + | == References == |
| + | <references/> |
| + | __TOC__ |
| + | </StructureSection> |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Single protein]] | + | [[Category: Large Structures]] |
- | [[Category: Banci, L.]] | + | [[Category: Banci L]] |
- | [[Category: Chasapis, C T.]] | + | [[Category: Chasapis CT]] |
- | [[Category: Ciofi-Baffoni, S.]] | + | [[Category: Ciofi-Baffoni S]] |
- | [[Category: Hadjiliadis, N.]] | + | [[Category: Hadjiliadis N]] |
- | [[Category: Rosato, A.]] | + | [[Category: Rosato A]] |
- | [[Category: SPINE, Structural Proteomics in Europe.]]
| + | |
- | [[Category: beta-alpha-beta-beta-alpha-beta structure]]
| + | |
- | [[Category: ferrodoxin-like fold]]
| + | |
- | [[Category: spine]]
| + | |
- | [[Category: structural genomic]]
| + | |
- | [[Category: structural proteomics in europe]]
| + | |
- | | + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 00:58:19 2008''
| + | |
| Structural highlights
Disease
ATP7A_HUMAN Defects in ATP7A are the cause of Menkes disease (MNKD) [MIM:309400; also known as kinky hair disease. MNKD is an X-linked recessive disorder of copper metabolism characterized by generalized copper deficiency. MNKD results in progressive neurodegeneration and connective-tissue disturbances: focal cerebral and cerebellar degeneration, early growth retardation, peculiar hair, hypopigmentation, cutis laxa, vascular complications and death in early childhood. The clinical features result from the dysfunction of several copper-dependent enzymes.[1] [2] [3] [4] [5] [6] [7] [8] [9] Defects in ATP7A are the cause of occipital horn syndrome (OHS) [MIM:304150; also known as X-linked cutis laxa. OHS is an X-linked recessive disorder of copper metabolism. Common features are unusual facial appearance, skeletal abnormalities, chronic diarrhea and genitourinary defects. The skeletal abnormalities included occipital horns, short, broad clavicles, deformed radii, ulnae and humeri, narrowing of the rib cage, undercalcified long bones with thin cortical walls and coxa valga.[10] [11] Defects in ATP7A are a cause of distal spinal muscular atrophy X-linked type 3 (DSMAX3) [MIM:300489. DSMAX3 is a neuromuscular disorder. Distal spinal muscular atrophy, also known as distal hereditary motor neuronopathy, represents a heterogeneous group of neuromuscular disorders caused by selective degeneration of motor neurons in the anterior horn of the spinal cord, without sensory deficit in the posterior horn. The overall clinical picture consists of a classical distal muscular atrophy syndrome in the legs without clinical sensory loss. The disease starts with weakness and wasting of distal muscles of the anterior tibial and peroneal compartments of the legs. Later on, weakness and atrophy may expand to the proximal muscles of the lower limbs and/or to the distal upper limbs.[12]
Function
ATP7A_HUMAN May supply copper to copper-requiring proteins within the secretory pathway, when localized in the trans-Golgi network. Under conditions of elevated extracellular copper, it relocalized to the plasma membrane where it functions in the efflux of copper from cells.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The interaction between the human copper(I) chaperone, HAH1, and one of its two physiological partners, the Menkes disease protein (ATP7A), was investigated in solution using heteronuclear NMR. The study was carried out through titrations involving HAH1 and either the second or the fifth soluble domains of ATP7A (MNK2 and MNK5, respectively), in the presence of copper(I). The copper-transfer properties of MNK2 and MNK5 are similar, and differ significantly from those previously observed for the yeast homologous system. In particular, no stable adduct is formed between either of the MNK domains and HAH1. The copper(I) transfer reaction is slow on the time scale of the NMR chemical shift, and the equilibrium is significantly shifted towards the formation of copper(I)-MNK2/MNK5. The solution structures of both apo- and copper(I)-MNK5, which were not available, are also reported. The results are discussed in comparison with the data available in the literature for the interaction between HAH1 and its partners from other spectroscopic techniques.
An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein.,Banci L, Bertini I, Ciofi-Baffoni S, Chasapis CT, Hadjiliadis N, Rosato A FEBS J. 2005 Feb;272(3):865-71. PMID:15670166[13]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tumer Z, Moller LB, Horn N. Mutation spectrum of ATP7A, the gene defective in Menkes disease. Adv Exp Med Biol. 1999;448:83-95. PMID:10079817
- ↑ Das S, Levinson B, Whitney S, Vulpe C, Packman S, Gitschier J. Diverse mutations in patients with Menkes disease often lead to exon skipping. Am J Hum Genet. 1994 Nov;55(5):883-9. PMID:7977350
- ↑ Tumer Z, Lund C, Tolshave J, Vural B, Tonnesen T, Horn N. Identification of point mutations in 41 unrelated patients affected with Menkes disease. Am J Hum Genet. 1997 Jan;60(1):63-71. PMID:8981948
- ↑ Ambrosini L, Mercer JF. Defective copper-induced trafficking and localization of the Menkes protein in patients with mild and copper-treated classical Menkes disease. Hum Mol Genet. 1999 Aug;8(8):1547-55. PMID:10401004
- ↑ Ogawa A, Yamamoto S, Takayanagi M, Kogo T, Kanazawa M, Kohno Y. Identification of three novel mutations in the MNK gene in three unrelated Japanese patients with classical Menkes disease. J Hum Genet. 1999;44(3):206-9. PMID:10319589 doi:10.1007/s100380050144
- ↑ Gu YH, Kodama H, Murata Y, Mochizuki D, Yanagawa Y, Ushijima H, Shiba T, Lee CC. ATP7A gene mutations in 16 patients with Menkes disease and a patient with occipital horn syndrome. Am J Med Genet. 2001 Mar 15;99(3):217-22. PMID:11241493
- ↑ Hahn S, Cho K, Ryu K, Kim J, Pai K, Kim M, Park H, Yoo O. Identification of four novel mutations in classical Menkes disease and successful prenatal DNA diagnosis. Mol Genet Metab. 2001 May;73(1):86-90. PMID:11350187 doi:10.1006/mgme.2001.3169
- ↑ Moller LB, Bukrinsky JT, Molgaard A, Paulsen M, Lund C, Tumer Z, Larsen S, Horn N. Identification and analysis of 21 novel disease-causing amino acid substitutions in the conserved part of ATP7A. Hum Mutat. 2005 Aug;26(2):84-93. PMID:15981243 doi:10.1002/humu.20190
- ↑ Leon-Garcia G, Santana A, Villegas-Sepulveda N, Perez-Gonzalez C, Henrriquez-Esquiroz JM, de Leon-Garcia C, Wong C, Baeza I. The T1048I mutation in ATP7A gene causes an unusual Menkes disease presentation. BMC Pediatr. 2012 Sep 19;12:150. doi: 10.1186/1471-2431-12-150. PMID:22992316 doi:10.1186/1471-2431-12-150
- ↑ Ronce N, Moizard MP, Robb L, Toutain A, Villard L, Moraine C. A C2055T transition in exon 8 of the ATP7A gene is associated with exon skipping in an occipital horn syndrome family. Am J Hum Genet. 1997 Jul;61(1):233-8. PMID:9246006 doi:10.1016/S0002-9297(07)64297-9
- ↑ Tang J, Robertson S, Lem KE, Godwin SC, Kaler SG. Functional copper transport explains neurologic sparing in occipital horn syndrome. Genet Med. 2006 Nov;8(11):711-8. PMID:17108763 doi:10.109701.gim.0000245578.94312.1e
- ↑ Kennerson ML, Nicholson GA, Kaler SG, Kowalski B, Mercer JF, Tang J, Llanos RM, Chu S, Takata RI, Speck-Martins CE, Baets J, Almeida-Souza L, Fischer D, Timmerman V, Taylor PE, Scherer SS, Ferguson TA, Bird TD, De Jonghe P, Feely SM, Shy ME, Garbern JY. Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet. 2010 Mar 12;86(3):343-52. doi: 10.1016/j.ajhg.2010.01.027. Epub, 2010 Feb 18. PMID:20170900 doi:10.1016/j.ajhg.2010.01.027
- ↑ Banci L, Bertini I, Ciofi-Baffoni S, Chasapis CT, Hadjiliadis N, Rosato A. An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein. FEBS J. 2005 Feb;272(3):865-71. PMID:15670166 doi:10.1111/j.1742-4658.2004.04526.x
|