|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Caldalaklibacillus thermarum F1-ATPase (epsilon mutant)== | | ==Caldalaklibacillus thermarum F1-ATPase (epsilon mutant)== |
- | <StructureSection load='5ik2' size='340' side='right' caption='[[5ik2]], [[Resolution|resolution]] 2.60Å' scene=''> | + | <StructureSection load='5ik2' size='340' side='right'caption='[[5ik2]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5ik2]] is a 16 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IK2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5IK2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5ik2]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Caldalkalibacillus_thermarum_TA2.A1 Caldalkalibacillus thermarum TA2.A1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IK2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5IK2 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ik2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ik2 OCA], [http://pdbe.org/5ik2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ik2 RCSB], [http://www.ebi.ac.uk/pdbsum/5ik2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ik2 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ik2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ik2 OCA], [https://pdbe.org/5ik2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ik2 RCSB], [https://www.ebi.ac.uk/pdbsum/5ik2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ik2 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/F5LA71_9BACI F5LA71_9BACI]] Produces ATP from ADP in the presence of a proton gradient across the membrane.[HAMAP-Rule:MF_00530][SAAS:SAAS00284553] [[http://www.uniprot.org/uniprot/F5LA74_9BACI F5LA74_9BACI]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.[HAMAP-Rule:MF_01346] [[http://www.uniprot.org/uniprot/F5LA73_9BACI F5LA73_9BACI]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.[HAMAP-Rule:MF_00815][SAAS:SAAS00011807] [[http://www.uniprot.org/uniprot/F5LA72_9BACI F5LA72_9BACI]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.[HAMAP-Rule:MF_01347] | + | [https://www.uniprot.org/uniprot/F5LA73_CALTT F5LA73_CALTT] Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.[ARBA:ARBA00003456][HAMAP-Rule:MF_00815] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[ATPase|ATPase]] | + | *[[ATPase 3D structures|ATPase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Cook, G M]] | + | [[Category: Caldalkalibacillus thermarum TA2 A1]] |
- | [[Category: Ferguson, S A]] | + | [[Category: Large Structures]] |
- | [[Category: Leslie, A G.W]] | + | [[Category: Cook GM]] |
- | [[Category: Montgomery, M G]] | + | [[Category: Ferguson SA]] |
- | [[Category: Walker, J E]] | + | [[Category: Leslie AGW]] |
- | [[Category: Complex]] | + | [[Category: Montgomery MG]] |
- | [[Category: F1-atpase]] | + | [[Category: Walker JE]] |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
F5LA73_CALTT Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.[ARBA:ARBA00003456][HAMAP-Rule:MF_00815]
Publication Abstract from PubMed
The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the epsilon-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the epsilon-subunit assumes a "down" state, with an ATP molecule bound to its two C-terminal alpha-helices; when ATP is scarce, the alpha-helices are proposed to inhibit ATP hydrolysis by assuming an "up" state, where the alpha-helices, devoid of ATP, enter the alpha3beta3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the epsilon-subunit is mechanistically important for modulating the enzyme's hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the alpha-helices in the down state. In a form with a mutated epsilon-subunit unable to bind ATP, the enzyme remains inactive and the epsilon-subunit is down. Therefore, neither the gamma-subunit nor the regulatory ATP bound to the epsilon-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the alpha3beta3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the betaE-catalytic site is in the usual "open" conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis.
Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.,Ferguson SA, Cook GM, Montgomery MG, Leslie AG, Walker JE Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10860-5. doi:, 10.1073/pnas.1612035113. Epub 2016 Sep 12. PMID:27621435[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ferguson SA, Cook GM, Montgomery MG, Leslie AG, Walker JE. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum. Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10860-5. doi:, 10.1073/pnas.1612035113. Epub 2016 Sep 12. PMID:27621435 doi:http://dx.doi.org/10.1073/pnas.1612035113
|