2poi

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:11, 21 February 2024) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
==Crystal structure of XIAP BIR1 domain (I222 form)==
==Crystal structure of XIAP BIR1 domain (I222 form)==
-
<StructureSection load='2poi' size='340' side='right' caption='[[2poi]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
+
<StructureSection load='2poi' size='340' side='right'caption='[[2poi]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[2poi]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2POI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2POI FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[2poi]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2POI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2POI FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BIRC4, API3, IAP3, XIAP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2poi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2poi OCA], [http://pdbe.org/2poi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2poi RCSB], [http://www.ebi.ac.uk/pdbsum/2poi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2poi ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2poi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2poi OCA], [https://pdbe.org/2poi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2poi RCSB], [https://www.ebi.ac.uk/pdbsum/2poi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2poi ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/XIAP_HUMAN XIAP_HUMAN]] Defects in XIAP are the cause of lymphoproliferative syndrome X-linked type 2 (XLP2) [MIM:[http://omim.org/entry/300635 300635]]. XLP is a rare immunodeficiency characterized by extreme susceptibility to infection with Epstein-Barr virus (EBV). Symptoms include severe or fatal mononucleosis, acquired hypogammaglobulinemia, pancytopenia and malignant lymphoma.<ref>PMID:17080092</ref>
+
[https://www.uniprot.org/uniprot/XIAP_HUMAN XIAP_HUMAN] Defects in XIAP are the cause of lymphoproliferative syndrome X-linked type 2 (XLP2) [MIM:[https://omim.org/entry/300635 300635]. XLP is a rare immunodeficiency characterized by extreme susceptibility to infection with Epstein-Barr virus (EBV). Symptoms include severe or fatal mononucleosis, acquired hypogammaglobulinemia, pancytopenia and malignant lymphoma.<ref>PMID:17080092</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/XIAP_HUMAN XIAP_HUMAN]] Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, copper homeostasis, mitogenic kinase signaling, cell proliferation, as well as cell invasion and metastasis. Acts as a direct caspase inhibitor. Directly bind to the active site pocket of CASP3 and CASP7 and obstructs substrate entry. Inactivates CASP9 by keeping it in a monomeric, inactive state. Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and the target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, CASP3, CASP7, CASP8, CASP9, MAP3K2/MEKK2, DIABLO/SMAC, AIFM1, CCS and BIRC5/survivin. Ubiquitinion of CCS leads to enhancement of its chaperone activity toward its physiologic target, SOD1, rather than proteasomal degradation. Ubiquitinion of MAP3K2/MEKK2 and AIFM1 does not lead to proteasomal degradation. Plays a role in copper homeostasis by ubiquitinationg COMMD1 and promoting its proteasomal degradation. Can also function as E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Regulates the BMP signaling pathway and the SMAD and MAP3K7/TAK1 dependent pathways leading to NF-kappa-B and JNK activation. Acts as an important regulator of innate immune signaling via regulation of Nodlike receptors (NLRs). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner. Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8. Acts as a positive regulator of Wnt signaling and ubiquitinates TLE1, TLE2, TLE3, TLE4 and AES. Ubiquitination of TLE3 results in inhibition of its interaction with TCF7L2/TCF4 thereby allowing efficient recruitment and binding of the transcriptional coactivator beta-catenin to TCF7L2/TCF4 that is required to initiate a Wnt-specific transcriptional program.<ref>PMID:9230442</ref> <ref>PMID:11447297</ref> <ref>PMID:12121969</ref> <ref>PMID:14685266</ref> <ref>PMID:14645242</ref> <ref>PMID:17967870</ref> <ref>PMID:19473982</ref> <ref>PMID:21145488</ref> <ref>PMID:20154138</ref> <ref>PMID:22103349</ref> <ref>PMID:22304967</ref> <ref>PMID:17560374</ref>
+
[https://www.uniprot.org/uniprot/XIAP_HUMAN XIAP_HUMAN] Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, copper homeostasis, mitogenic kinase signaling, cell proliferation, as well as cell invasion and metastasis. Acts as a direct caspase inhibitor. Directly bind to the active site pocket of CASP3 and CASP7 and obstructs substrate entry. Inactivates CASP9 by keeping it in a monomeric, inactive state. Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and the target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, CASP3, CASP7, CASP8, CASP9, MAP3K2/MEKK2, DIABLO/SMAC, AIFM1, CCS and BIRC5/survivin. Ubiquitinion of CCS leads to enhancement of its chaperone activity toward its physiologic target, SOD1, rather than proteasomal degradation. Ubiquitinion of MAP3K2/MEKK2 and AIFM1 does not lead to proteasomal degradation. Plays a role in copper homeostasis by ubiquitinationg COMMD1 and promoting its proteasomal degradation. Can also function as E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Regulates the BMP signaling pathway and the SMAD and MAP3K7/TAK1 dependent pathways leading to NF-kappa-B and JNK activation. Acts as an important regulator of innate immune signaling via regulation of Nodlike receptors (NLRs). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner. Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8. Acts as a positive regulator of Wnt signaling and ubiquitinates TLE1, TLE2, TLE3, TLE4 and AES. Ubiquitination of TLE3 results in inhibition of its interaction with TCF7L2/TCF4 thereby allowing efficient recruitment and binding of the transcriptional coactivator beta-catenin to TCF7L2/TCF4 that is required to initiate a Wnt-specific transcriptional program.<ref>PMID:9230442</ref> <ref>PMID:11447297</ref> <ref>PMID:12121969</ref> <ref>PMID:14685266</ref> <ref>PMID:14645242</ref> <ref>PMID:17967870</ref> <ref>PMID:19473982</ref> <ref>PMID:21145488</ref> <ref>PMID:20154138</ref> <ref>PMID:22103349</ref> <ref>PMID:22304967</ref> <ref>PMID:17560374</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
<jmolCheckbox>
<jmolCheckbox>
-
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/po/2poi_consurf.spt"</scriptWhenChecked>
+
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/po/2poi_consurf.spt"</scriptWhenChecked>
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
Line 22: Line 22:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2poi ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2poi ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
In addition to caspase inhibition, X-linked inhibitor of apoptosis (XIAP) induces NF-kappaB and MAP kinase activation during TGF-b and BMP receptor signaling and upon overexpression. Here we show that the BIR1 domain of XIAP, which has no previously ascribed function, directly interacts with TAB1 to induce NF-kappaB activation. TAB1 is an upstream adaptor for the activation of the kinase TAK1, which in turn couples to the NF-kappaB pathway. We report the crystal structures of BIR1, TAB1, and the BIR1/TAB1 complex. The BIR1/TAB1 structure reveals a striking butterfly-shaped dimer and the detailed interaction between BIR1 and TAB1. Structure-based mutagenesis and knockdown of TAB1 show unambiguously that the BIR1/TAB1 interaction is crucial for XIAP-induced TAK1 and NF-kappaB activation. We show that although not interacting with BIR1, Smac, the antagonist for caspase inhibition by XIAP, also inhibits the XIAP/TAB1 interaction. Disruption of BIR1 dimerization abolishes XIAP-mediated NF-kappaB activation, implicating a proximity-induced mechanism for TAK1 activation.
 
- 
-
XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization.,Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC, Myszka D, Han J, Wu H Mol Cell. 2007 Jun 8;26(5):689-702. PMID:17560374<ref>PMID:17560374</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 2poi" style="background-color:#fffaf0;"></div>
 
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
-
[[Category: Lin, S]]
+
[[Category: Large Structures]]
-
[[Category: Signaling protein-apoptosis complex]]
+
[[Category: Lin S]]
-
[[Category: Zinc finger]]
+

Current revision

Crystal structure of XIAP BIR1 domain (I222 form)

PDB ID 2poi

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools