|
|
(3 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==SOLUTION NMR STRUCTURE OF THE COMPLEX OF ALPHA-BUNGAROTOXIN WITH A LIBRARY DERIVED PEPTIDE, 20 STRUCTURES== | | ==SOLUTION NMR STRUCTURE OF THE COMPLEX OF ALPHA-BUNGAROTOXIN WITH A LIBRARY DERIVED PEPTIDE, 20 STRUCTURES== |
- | <StructureSection load='1bxp' size='340' side='right' caption='[[1bxp]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | + | <StructureSection load='1bxp' size='340' side='right'caption='[[1bxp]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1bxp]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bungarus_multicinctus Bungarus multicinctus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BXP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1BXP FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1bxp]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bungarus_multicinctus Bungarus multicinctus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BXP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BXP FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1bxp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bxp OCA], [http://pdbe.org/1bxp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1bxp RCSB], [http://www.ebi.ac.uk/pdbsum/1bxp PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1bxp ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 20 models</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1bxp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bxp OCA], [https://pdbe.org/1bxp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1bxp RCSB], [https://www.ebi.ac.uk/pdbsum/1bxp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1bxp ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/NXL1A_BUNMU NXL1A_BUNMU]] Binds with high affinity to muscular and neuronal (alpha-7, alpha-8, and alpha-9) nicotinic acetylcholine receptors. Produces peripheral paralysis by blocking neuromuscular transmission at the postsynaptic site. Blocks the extracellular increase of dopamine evoked by nicotine only at the higher dose (4.2 uM).<ref>PMID:9305882</ref> <ref>PMID:9840221</ref> | + | [https://www.uniprot.org/uniprot/3L21A_BUNMU 3L21A_BUNMU] Binds with high affinity to muscular (tested on Torpedo marmorata, Kd=0.4 nM) and neuronal (tested on chimeric alpha-7/CHRNA7, Kd=0.95 nM) nicotinic acetylcholine receptor (nAChR) and inhibits acetylcholine from binding to the receptor, thereby impairing neuromuscular and neuronal transmission (PubMed:9305882). It also shows an activity on GABA(A) receptors (PubMed:16549768, PubMed:25634239). It antagonises GABA-activated currents with high potency when tested on primary hippocampal neurons (PubMed:25634239). It inhibits recombinantly expressed GABA(A) receptors composed of alpha-2-beta-2-gamma-2 (GABRA2-GABRB2-GABRG2) subunits with high potency (62.3% inhibition at 20 uM of toxin) (PubMed:25634239). It also shows a weaker inhibition on GABA(A) receptors composed of alpha-1-beta-2-gamma-2 (GABRA1-GABRB2-GABRG2) subunits, alpha-4-beta-2-gamma-2 (GABRA4-GABRB2-GABRG2) subunits, and alpha-5-beta-2-gamma-2 (GABRA5-GABRB2-GABRG2) subunits (PubMed:25634239). A very weak inhibition is also observed on GABA(A) receptor composed of alpha-1-beta-3-gamma-2 (GABRA1-GABRB3-GABRG2) (PubMed:26221036). It has also been shown to bind and inhibit recombinant GABA(A) receptor beta-3/GABRB3 subunit (Kd=about 50 nM) (PubMed:16549768). In addition, it blocks the extracellular increase of dopamine evoked by nicotine only at the higher dose (4.2 uM) (PubMed:9840221).<ref>PMID:16549768</ref> <ref>PMID:25634239</ref> <ref>PMID:9305882</ref> <ref>PMID:9840221</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bx/1bxp_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bx/1bxp_consurf.spt"</scriptWhenChecked> |
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
Line 27: |
Line 28: |
| </div> | | </div> |
| <div class="pdbe-citations 1bxp" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 1bxp" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Bungarotoxin 3D structures|Bungarotoxin 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 32: |
Line 36: |
| </StructureSection> | | </StructureSection> |
| [[Category: Bungarus multicinctus]] | | [[Category: Bungarus multicinctus]] |
- | [[Category: Anglister, J]] | + | [[Category: Large Structures]] |
- | [[Category: Balass, M]] | + | [[Category: Anglister J]] |
- | [[Category: Fuchs, S]] | + | [[Category: Balass M]] |
- | [[Category: Katchalski-Katzir, E]] | + | [[Category: Fuchs S]] |
- | [[Category: Scherf, T]] | + | [[Category: Katchalski-Katzir E]] |
- | [[Category: Alpha-bungarotoxin]]
| + | [[Category: Scherf T]] |
- | [[Category: Library peptide]]
| + | |
| Structural highlights
Function
3L21A_BUNMU Binds with high affinity to muscular (tested on Torpedo marmorata, Kd=0.4 nM) and neuronal (tested on chimeric alpha-7/CHRNA7, Kd=0.95 nM) nicotinic acetylcholine receptor (nAChR) and inhibits acetylcholine from binding to the receptor, thereby impairing neuromuscular and neuronal transmission (PubMed:9305882). It also shows an activity on GABA(A) receptors (PubMed:16549768, PubMed:25634239). It antagonises GABA-activated currents with high potency when tested on primary hippocampal neurons (PubMed:25634239). It inhibits recombinantly expressed GABA(A) receptors composed of alpha-2-beta-2-gamma-2 (GABRA2-GABRB2-GABRG2) subunits with high potency (62.3% inhibition at 20 uM of toxin) (PubMed:25634239). It also shows a weaker inhibition on GABA(A) receptors composed of alpha-1-beta-2-gamma-2 (GABRA1-GABRB2-GABRG2) subunits, alpha-4-beta-2-gamma-2 (GABRA4-GABRB2-GABRG2) subunits, and alpha-5-beta-2-gamma-2 (GABRA5-GABRB2-GABRG2) subunits (PubMed:25634239). A very weak inhibition is also observed on GABA(A) receptor composed of alpha-1-beta-3-gamma-2 (GABRA1-GABRB3-GABRG2) (PubMed:26221036). It has also been shown to bind and inhibit recombinant GABA(A) receptor beta-3/GABRB3 subunit (Kd=about 50 nM) (PubMed:16549768). In addition, it blocks the extracellular increase of dopamine evoked by nicotine only at the higher dose (4.2 uM) (PubMed:9840221).[1] [2] [3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The solution structure of the complex between alpha-bungarotoxin (alpha-BTX) and a 13-residue library-derived peptide (MRYYESSLKSYPD) has been solved using two-dimensional proton-NMR spectroscopy. The bound peptide adopts an almost-globular conformation resulting from three turns that surround a hydrophobic core formed by Tyr-11 of the peptide. The peptide fills an alpha-BTX pocket made of residues located at fingers I and II, as well as at the C-terminal region. Of the peptide residues, the largest contact area is formed by Tyr-3 and Tyr-4. These findings are in accord with the previous data in which it had been shown that substitution of these aromatic residues by aliphatic amino acids leads to loss of binding of the modified peptide with alpha-BTX. Glu-5 and Leu-8, which also remarkably contribute to the contact area with the toxin, are present in all the library-derived peptides that bind strongly to alpha-BTX. The structure of the complex may explain the fact that the library-derived peptide binds alpha-BTX with a 15-fold higher affinity than that shown by the acetylcholine receptor peptide (alpha185-196). Although both peptides bind to similar sites on alpha-BTX, the latter adopts an extended conformation when bound to the toxin [Basus, V., Song, G. & Hawrot, E. (1993) Biochemistry 32, 12290-12298], whereas the library peptide is nearly globular and occupies a larger surface area of alpha-BTX binding site.
Three-dimensional solution structure of the complex of alpha-bungarotoxin with a library-derived peptide.,Scherf T, Balass M, Fuchs S, Katchalski-Katzir E, Anglister J Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6059-64. PMID:9177168[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ McCann CM, Bracamontes J, Steinbach JH, Sanes JR. The cholinergic antagonist alpha-bungarotoxin also binds and blocks a subset of GABA receptors. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5149-54. doi:, 10.1073/pnas.0600847103. Epub 2006 Mar 20. PMID:16549768 doi:http://dx.doi.org/10.1073/pnas.0600847103
- ↑ Hannan S, Mortensen M, Smart TG. Snake neurotoxin alpha-bungarotoxin is an antagonist at native GABA(A) receptors. Neuropharmacology. 2015 Jun;93:28-40. doi: 10.1016/j.neuropharm.2015.01.001. Epub, 2015 Jan 26. PMID:25634239 doi:http://dx.doi.org/10.1016/j.neuropharm.2015.01.001
- ↑ Servent D, Winckler-Dietrich V, Hu HY, Kessler P, Drevet P, Bertrand D, Menez A. Only snake curaremimetic toxins with a fifth disulfide bond have high affinity for the neuronal alpha7 nicotinic receptor. J Biol Chem. 1997 Sep 26;272(39):24279-86. PMID:9305882
- ↑ Dajas-Bailador F, Costa G, Dajas F, Emmett S. Effects of alpha-erabutoxin, alpha-bungarotoxin, alpha-cobratoxin and fasciculin on the nicotine-evoked release of dopamine in the rat striatum in vivo. Neurochem Int. 1998 Oct;33(4):307-12. PMID:9840221
- ↑ Scherf T, Balass M, Fuchs S, Katchalski-Katzir E, Anglister J. Three-dimensional solution structure of the complex of alpha-bungarotoxin with a library-derived peptide. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6059-64. PMID:9177168
|