|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
- | {{Large structure}}
| + | |
| ==Cryogenic WT DHFR, time-averaged ensemble== | | ==Cryogenic WT DHFR, time-averaged ensemble== |
- | <StructureSection load='4p3r' size='340' side='right' caption='[[4p3r]], [[Resolution|resolution]] 1.15Å' scene=''> | + | <StructureSection load='4p3r' size='340' side='right'caption='[[4p3r]], [[Resolution|resolution]] 1.15Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4p3r]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecodh Ecodh]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4P3R OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4P3R FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4p3r]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_str._K-12_substr._DH10B Escherichia coli str. K-12 substr. DH10B]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4P3R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4P3R FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FOL:FOLIC+ACID'>FOL</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.15Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4kjk|4kjk]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FOL:FOLIC+ACID'>FOL</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">folA, ECDH10B_0049 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=316385 ECODH])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4p3r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4p3r OCA], [https://pdbe.org/4p3r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4p3r RCSB], [https://www.ebi.ac.uk/pdbsum/4p3r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4p3r ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Dihydrofolate_reductase Dihydrofolate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.5.1.3 1.5.1.3] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4p3r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4p3r OCA], [http://pdbe.org/4p3r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4p3r RCSB], [http://www.ebi.ac.uk/pdbsum/4p3r PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4p3r ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
- | {{Large structure}} | |
- | == Function == | |
- | [[http://www.uniprot.org/uniprot/B1XC49_ECODH B1XC49_ECODH]] Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis (By similarity).[PIRNR:PIRNR000194] | |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 17: |
| </div> | | </div> |
| <div class="pdbe-citations 4p3r" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 4p3r" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Dihydrofolate reductase 3D structures|Dihydrofolate reductase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Dihydrofolate reductase]] | + | [[Category: Escherichia coli str. K-12 substr. DH10B]] |
- | [[Category: Ecodh]] | + | [[Category: Large Structures]] |
- | [[Category: Bedem, H van den]]
| + | [[Category: Fraser JS]] |
- | [[Category: Fraser, J S]] | + | [[Category: Keedy DA]] |
- | [[Category: Keedy, D A]] | + | [[Category: Van den Bedem H]] |
- | [[Category: Oxidoreductase]] | + | |
- | [[Category: Rossmann fold]]
| + | |
| Structural highlights
Publication Abstract from PubMed
Most macromolecular X-ray structures are determined from cryocooled crystals, but it is unclear whether cryocooling distorts functionally relevant flexibility. Here we compare independently acquired pairs of high-resolution data sets of a model Michaelis complex of dihydrofolate reductase (DHFR), collected by separate groups at both room and cryogenic temperatures. These data sets allow us to isolate the differences between experimental procedures and between temperatures. Our analyses of multiconformer models and time-averaged ensembles suggest that cryocooling suppresses and otherwise modifies side-chain and main-chain conformational heterogeneity, quenching dynamic contact networks. Despite some idiosyncratic differences, most changes from room temperature to cryogenic temperature are conserved and likely reflect temperature-dependent solvent remodeling. Both cryogenic data sets point to additional conformations not evident in the corresponding room temperature data sets, suggesting that cryocooling does not merely trap preexisting conformational heterogeneity. Our results demonstrate that crystal cryocooling consistently distorts the energy landscape of DHFR, a paragon for understanding functional protein dynamics.
Crystal Cryocooling Distorts Conformational Heterogeneity in a Model Michaelis Complex of DHFR.,Keedy DA, van den Bedem H, Sivak DA, Petsko GA, Ringe D, Wilson MA, Fraser JS Structure. 2014 Jun 10;22(6):899-910. doi: 10.1016/j.str.2014.04.016. Epub 2014, May 29. PMID:24882744[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Keedy DA, van den Bedem H, Sivak DA, Petsko GA, Ringe D, Wilson MA, Fraser JS. Crystal Cryocooling Distorts Conformational Heterogeneity in a Model Michaelis Complex of DHFR. Structure. 2014 Jun 10;22(6):899-910. doi: 10.1016/j.str.2014.04.016. Epub 2014, May 29. PMID:24882744 doi:http://dx.doi.org/10.1016/j.str.2014.04.016
|