|
|
| (16 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| - | [[Image:2c2v.gif|left|200px]] | |
| | | | |
| - | {{Structure
| + | ==Crystal structure of the CHIP-UBC13-UEV1a complex== |
| - | |PDB= 2c2v |SIZE=350|CAPTION= <scene name='initialview01'>2c2v</scene>, resolution 2.90Å
| + | <StructureSection load='2c2v' size='340' side='right'caption='[[2c2v]], [[Resolution|resolution]] 2.90Å' scene=''> |
| - | |SITE=
| + | == Structural highlights == |
| - | |LIGAND=
| + | <table><tr><td colspan='2'>[[2c2v]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2C2V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2C2V FirstGlance]. <br> |
| - | |ACTIVITY=
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9Å</td></tr> |
| - | |GENE=
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2c2v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2c2v OCA], [https://pdbe.org/2c2v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2c2v RCSB], [https://www.ebi.ac.uk/pdbsum/2c2v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2c2v ProSAT]</span></td></tr> |
| - | |DOMAIN=
| + | </table> |
| - | |RELATEDENTRY=
| + | == Function == |
| - | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2c2v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2c2v OCA], [http://www.ebi.ac.uk/pdbsum/2c2v PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2c2v RCSB]</span>
| + | [https://www.uniprot.org/uniprot/UBE2N_HUMAN UBE2N_HUMAN] The UBE2V1-UBE2N and UBE2V2-UBE2N heterodimers catalyze the synthesis of non-canonical 'Lys-63'-linked polyubiquitin chains. This type of polyubiquitination does not lead to protein degradation by the proteasome. Mediates transcriptional activation of target genes. Plays a role in the control of progress through the cell cycle and differentiation. Plays a role in the error-free DNA repair pathway and contributes to the survival of cells after DNA damage. Acts together with the E3 ligases, HLTF and SHPRH, in the 'Lys-63'-linked poly-ubiquitination of PCNA upon genotoxic stress, which is required for DNA repair. Appears to act together with E3 ligase RNF5 in the 'Lys-63'-linked polyubiquitination of JKAMP thereby regulating JKAMP function by decreasing its association with components of the proteasome and ERAD. Promotes TRIM5 capsid-specific restriction activity and the UBE2V1-UBE2N heterodimer acts in concert with TRIM5 to generate 'Lys-63'-linked polyubiquitin chains which activate the MAP3K7/TAK1 complex which in turn results in the induction and expression of NF-kappa-B and MAPK-responsive inflammatory genes (By similarity).<ref>PMID:10089880</ref> <ref>PMID:14562038</ref> <ref>PMID:19269966</ref> <ref>PMID:20061386</ref> <ref>PMID:21512573</ref> |
| - | }}
| + | == Evolutionary Conservation == |
| | + | [[Image:Consurf_key_small.gif|200px|right]] |
| | + | Check<jmol> |
| | + | <jmolCheckbox> |
| | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/c2/2c2v_consurf.spt"</scriptWhenChecked> |
| | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| | + | <text>to colour the structure by Evolutionary Conservation</text> |
| | + | </jmolCheckbox> |
| | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2c2v ConSurf]. |
| | + | <div style="clear:both"></div> |
| | + | <div style="background-color:#fffaf0;"> |
| | + | == Publication Abstract from PubMed == |
| | + | CHIP is a dimeric U box E3 ubiquitin ligase that binds Hsp90 and/or Hsp70 via its TPR-domain, facilitating ubiquitylation of chaperone bound client proteins. We have determined the crystal structure of CHIP bound to an Hsp90 C-terminal decapeptide. The structure explains how CHIP associates with either chaperone type and reveals an unusual asymmetric homodimer in which the protomers adopt radically different conformations. Additionally, we identified CHIP as a functional partner of Ubc13-Uev1a in formation of Lys63-linked polyubiquitin chains, extending CHIP's roles into ubiquitin regulation as well as targeted destruction. The structure of Ubc13-Uev1a bound to the CHIP U box domain defines the basis for selective cooperation of CHIP with specific ubiquitin-conjugating enzymes. Remarkably, the asymmetric arrangement of the TPR domains in the CHIP dimer occludes one Ubc binding site, so that CHIP operates with half-of-sites activity, providing an elegant means for coupling a dimeric chaperone to a single ubiquitylation system. |
| | | | |
| - | '''CRYSTAL STRUCTURE OF THE CHIP-UBC13-UEV1A COMPLEX'''
| + | Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex.,Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, Prodromou C, Pearl LH Mol Cell. 2005 Nov 23;20(4):525-38. PMID:16307917<ref>PMID:16307917</ref> |
| | | | |
| | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| | + | </div> |
| | + | <div class="pdbe-citations 2c2v" style="background-color:#fffaf0;"></div> |
| | | | |
| - | ==Overview== | + | ==See Also== |
| - | CHIP is a dimeric U box E3 ubiquitin ligase that binds Hsp90 and/or Hsp70 via its TPR-domain, facilitating ubiquitylation of chaperone bound client proteins. We have determined the crystal structure of CHIP bound to an Hsp90 C-terminal decapeptide. The structure explains how CHIP associates with either chaperone type and reveals an unusual asymmetric homodimer in which the protomers adopt radically different conformations. Additionally, we identified CHIP as a functional partner of Ubc13-Uev1a in formation of Lys63-linked polyubiquitin chains, extending CHIP's roles into ubiquitin regulation as well as targeted destruction. The structure of Ubc13-Uev1a bound to the CHIP U box domain defines the basis for selective cooperation of CHIP with specific ubiquitin-conjugating enzymes. Remarkably, the asymmetric arrangement of the TPR domains in the CHIP dimer occludes one Ubc binding site, so that CHIP operates with half-of-sites activity, providing an elegant means for coupling a dimeric chaperone to a single ubiquitylation system.
| + | *[[3D structures of ubiquitin conjugating enzyme|3D structures of ubiquitin conjugating enzyme]] |
| - | | + | == References == |
| - | ==About this Structure== | + | <references/> |
| - | 2C2V is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2C2V OCA].
| + | __TOC__ |
| - | | + | </StructureSection> |
| - | ==Reference==
| + | |
| - | Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex., Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, Prodromou C, Pearl LH, Mol Cell. 2005 Nov 23;20(4):525-38. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16307917 16307917]
| + | |
| | [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
| | + | [[Category: Large Structures]] |
| | [[Category: Mus musculus]] | | [[Category: Mus musculus]] |
| - | [[Category: Protein complex]]
| + | [[Category: Pearl LH]] |
| - | [[Category: Pearl, L H.]] | + | [[Category: Roe SM]] |
| - | [[Category: Roe, S M.]] | + | [[Category: Zhang M]] |
| - | [[Category: Zhang, M.]] | + | |
| - | [[Category: e3 ligase]]
| + | |
| - | [[Category: heat-shock protein]]
| + | |
| - | [[Category: tpr]]
| + | |
| - | [[Category: ubiquitinylation]]
| + | |
| - | | + | |
| - | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 02:15:32 2008''
| + | |
| Structural highlights
Function
UBE2N_HUMAN The UBE2V1-UBE2N and UBE2V2-UBE2N heterodimers catalyze the synthesis of non-canonical 'Lys-63'-linked polyubiquitin chains. This type of polyubiquitination does not lead to protein degradation by the proteasome. Mediates transcriptional activation of target genes. Plays a role in the control of progress through the cell cycle and differentiation. Plays a role in the error-free DNA repair pathway and contributes to the survival of cells after DNA damage. Acts together with the E3 ligases, HLTF and SHPRH, in the 'Lys-63'-linked poly-ubiquitination of PCNA upon genotoxic stress, which is required for DNA repair. Appears to act together with E3 ligase RNF5 in the 'Lys-63'-linked polyubiquitination of JKAMP thereby regulating JKAMP function by decreasing its association with components of the proteasome and ERAD. Promotes TRIM5 capsid-specific restriction activity and the UBE2V1-UBE2N heterodimer acts in concert with TRIM5 to generate 'Lys-63'-linked polyubiquitin chains which activate the MAP3K7/TAK1 complex which in turn results in the induction and expression of NF-kappa-B and MAPK-responsive inflammatory genes (By similarity).[1] [2] [3] [4] [5]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
CHIP is a dimeric U box E3 ubiquitin ligase that binds Hsp90 and/or Hsp70 via its TPR-domain, facilitating ubiquitylation of chaperone bound client proteins. We have determined the crystal structure of CHIP bound to an Hsp90 C-terminal decapeptide. The structure explains how CHIP associates with either chaperone type and reveals an unusual asymmetric homodimer in which the protomers adopt radically different conformations. Additionally, we identified CHIP as a functional partner of Ubc13-Uev1a in formation of Lys63-linked polyubiquitin chains, extending CHIP's roles into ubiquitin regulation as well as targeted destruction. The structure of Ubc13-Uev1a bound to the CHIP U box domain defines the basis for selective cooperation of CHIP with specific ubiquitin-conjugating enzymes. Remarkably, the asymmetric arrangement of the TPR domains in the CHIP dimer occludes one Ubc binding site, so that CHIP operates with half-of-sites activity, providing an elegant means for coupling a dimeric chaperone to a single ubiquitylation system.
Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex.,Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, Prodromou C, Pearl LH Mol Cell. 2005 Nov 23;20(4):525-38. PMID:16307917[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Hofmann RM, Pickart CM. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell. 1999 Mar 5;96(5):645-53. PMID:10089880
- ↑ Bothos J, Summers MK, Venere M, Scolnick DM, Halazonetis TD. The Chfr mitotic checkpoint protein functions with Ubc13-Mms2 to form Lys63-linked polyubiquitin chains. Oncogene. 2003 Oct 16;22(46):7101-7. PMID:14562038 doi:10.1038/sj.onc.1206831
- ↑ Tcherpakov M, Delaunay A, Toth J, Kadoya T, Petroski MD, Ronai ZA. Regulation of endoplasmic reticulum-associated degradation by RNF5-dependent ubiquitination of JNK-associated membrane protein (JAMP). J Biol Chem. 2009 May 1;284(18):12099-109. doi: 10.1074/jbc.M808222200. Epub 2009, Mar 6. PMID:19269966 doi:10.1074/jbc.M808222200
- ↑ David Y, Ziv T, Admon A, Navon A. The E2 ubiquitin conjugating enzymes direct polyubiquitination to preferred lysines. J Biol Chem. 2010 Jan 8. PMID:20061386 doi:M109.089003
- ↑ Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil PD, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature. 2011 Apr 21;472(7343):361-5. doi: 10.1038/nature09976. PMID:21512573 doi:10.1038/nature09976
- ↑ Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, Prodromou C, Pearl LH. Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell. 2005 Nov 23;20(4):525-38. PMID:16307917 doi:10.1016/j.molcel.2005.09.023
|