|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of the Ctf18-1-8 module from Ctf18-RFC in complex with a 63 kDa fragment of DNA Polymerase epsilon== | | ==Crystal structure of the Ctf18-1-8 module from Ctf18-RFC in complex with a 63 kDa fragment of DNA Polymerase epsilon== |
- | <StructureSection load='5oki' size='340' side='right' caption='[[5oki]], [[Resolution|resolution]] 4.50Å' scene=''> | + | <StructureSection load='5oki' size='340' side='right'caption='[[5oki]], [[Resolution|resolution]] 4.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5oki]] is a 8 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5OKI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5OKI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5oki]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5OKI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5OKI FirstGlance]. <br> |
- | </td></tr><tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 4.5Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5oki FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5oki OCA], [http://pdbe.org/5oki PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5oki RCSB], [http://www.ebi.ac.uk/pdbsum/5oki PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5oki ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5oki FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5oki OCA], [https://pdbe.org/5oki PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5oki RCSB], [https://www.ebi.ac.uk/pdbsum/5oki PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5oki ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CTF18_YEAST CTF18_YEAST]] Essential for the fidelity of chromosome transmission. Required for the DNA replication block checkpoint. Component of the RFC-like complex CTF18-RFC which is required for efficient establishment of chromosome cohesion during S-phase and may load or unload POL30/PCNA. During a clamp loading circle, the RFC:clamp complex binds to DNA and the recognition of the double-stranded/single-stranded junction stimulates ATP hydrolysis by RFC. The complex presumably provides bipartite ATP sites in which one subunit supplies a catalytic site for hydrolysis of ATP bound to the neighboring subunit. Dissociation of RFC from the clamp leaves the clamp encircling DNA.<ref>PMID:11287619</ref> <ref>PMID:11389843</ref> <ref>PMID:11486023</ref> <ref>PMID:15964801</ref> [[http://www.uniprot.org/uniprot/DPOE_YEAST DPOE_YEAST]] DNA polymerase epsilon (DNA polymerase II) participates in chromosomal DNA replication. It is required during synthesis of the leading and lagging DNA strands at the replication fork and binds at/or near replication origins and moves along DNA with the replication fork. It has 3'-5' proofreading exonuclease activity that correct errors arising during DNA replication. It is also involved in DNA synthesis during DNA repair.<ref>PMID:12124389</ref> [[http://www.uniprot.org/uniprot/CTF8_YEAST CTF8_YEAST]] Essential for the fidelity of chromosome transmission. Required for the DNA replication block checkpoint. Component of the RFC-like complex CTF18-RFC which is required for efficient establishment of chromosome cohesion during S-phase and may load or unload POL30/PCNA. During a clamp loading circle, the RFC:clamp complex binds to DNA and the recognition of the double-stranded/single-stranded junction stimulates ATP hydrolysis by RFC. The complex presumably provides bipartite ATP sites in which one subunit supplies a catalytic site for hydrolysis of ATP bound to the neighboring subunit. Dissociation of RFC from the clamp leaves the clamp encircling DNA.<ref>PMID:11389843</ref> <ref>PMID:15964801</ref> [[http://www.uniprot.org/uniprot/DCC1_YEAST DCC1_YEAST]] Component of the RFC-like complex CTF18-RFC which is required for efficient establishment of chromosome cohesion during S-phase and may load or unload POL30/PCNA. During a clamp loading circle, the RFC:clamp complex binds to DNA and the recognition of the double-stranded/single-stranded junction stimulates ATP hydrolysis by RFC. The complex presumably provides bipartite ATP sites in which one subunit supplies a catalytic site for hydrolysis of ATP bound to the neighboring subunit. Dissociation of RFC from the clamp leaves the clamp encircling DNA.<ref>PMID:11389843</ref> <ref>PMID:15964801</ref> | + | [https://www.uniprot.org/uniprot/DPOE_YEAST DPOE_YEAST] DNA polymerase epsilon (DNA polymerase II) participates in chromosomal DNA replication. It is required during synthesis of the leading and lagging DNA strands at the replication fork and binds at/or near replication origins and moves along DNA with the replication fork. It has 3'-5' proofreading exonuclease activity that correct errors arising during DNA replication. It is also involved in DNA synthesis during DNA repair.<ref>PMID:12124389</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 18: |
Line 18: |
| </div> | | </div> |
| <div class="pdbe-citations 5oki" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 5oki" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[DNA polymerase 3D structures|DNA polymerase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: DNA-directed DNA polymerase]] | + | [[Category: Large Structures]] |
- | [[Category: Grabarczyk, D B]] | + | [[Category: Saccharomyces cerevisiae S288C]] |
- | [[Category: Kisker, C]] | + | [[Category: Grabarczyk DB]] |
- | [[Category: Clamp loader dna-binding protein dna polymerase winged-helix domain]] | + | [[Category: Kisker C]] |
- | [[Category: Replication]]
| + | |
| Structural highlights
Function
DPOE_YEAST DNA polymerase epsilon (DNA polymerase II) participates in chromosomal DNA replication. It is required during synthesis of the leading and lagging DNA strands at the replication fork and binds at/or near replication origins and moves along DNA with the replication fork. It has 3'-5' proofreading exonuclease activity that correct errors arising during DNA replication. It is also involved in DNA synthesis during DNA repair.[1]
Publication Abstract from PubMed
Ctf18-RFC is an alternative PCNA loader which plays important but poorly understood roles in multiple DNA replication-associated processes. To fulfill its specialist roles, the Ctf18-RFC clamp loader contains a unique module in which the Dcc1-Ctf8 complex is bound to the C terminus of Ctf18 (the Ctf18-1-8 module). Here, we report the structural and functional characterization of the heterotetrameric complex formed between Ctf18-1-8 and a 63 kDa fragment of DNA polymerase varepsilon. Our data reveal that Ctf18-1-8 binds stably to the polymerase and far from its other functional sites, suggesting that Ctf18-RFC could be associated with Pol varepsilon throughout normal replication as the leading strand clamp loader. We also show that Pol varepsilon and double-stranded DNA compete to bind the same winged-helix domain on Dcc1, with Pol varepsilon being the preferred binding partner, thus suggesting that there are two alternative pathways to recruit Ctf18-RFC to sites of replication.
Structural Basis for the Recruitment of Ctf18-RFC to the Replisome.,Grabarczyk DB, Silkenat S, Kisker C Structure. 2017 Dec 6. pii: S0969-2126(17)30357-X. doi:, 10.1016/j.str.2017.11.004. PMID:29225079[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Shimizu K, Hashimoto K, Kirchner JM, Nakai W, Nishikawa H, Resnick MA, Sugino A. Fidelity of DNA polymerase epsilon holoenzyme from budding yeast Saccharomyces cerevisiae. J Biol Chem. 2002 Oct 4;277(40):37422-9. Epub 2002 Jul 17. PMID:12124389 doi:http://dx.doi.org/10.1074/jbc.M204476200
- ↑ Grabarczyk DB, Silkenat S, Kisker C. Structural Basis for the Recruitment of Ctf18-RFC to the Replisome. Structure. 2017 Dec 6. pii: S0969-2126(17)30357-X. doi:, 10.1016/j.str.2017.11.004. PMID:29225079 doi:http://dx.doi.org/10.1016/j.str.2017.11.004
|