|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Vps36 N-terminal PH domain== | | ==Vps36 N-terminal PH domain== |
- | <StructureSection load='2cay' size='340' side='right' caption='[[2cay]], [[Resolution|resolution]] 1.90Å' scene=''> | + | <StructureSection load='2cay' size='340' side='right'caption='[[2cay]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2cay]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2CAY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2CAY FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2cay]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2CAY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2CAY FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1u5t|1u5t]], [[1w7p|1w7p]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2cay FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2cay OCA], [http://pdbe.org/2cay PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2cay RCSB], [http://www.ebi.ac.uk/pdbsum/2cay PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2cay ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2cay FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2cay OCA], [https://pdbe.org/2cay PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2cay RCSB], [https://www.ebi.ac.uk/pdbsum/2cay PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2cay ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/VPS36_YEAST VPS36_YEAST] Component of the ESCRT-II complex, which is required for multivesicular body (MVB) formation and sorting of endosomal cargo proteins into MVBs. The MVB pathway mediates delivery of transmembrane proteins into the lumen of the lysosome for degradation. The ESCRT-II complex is probably involved in the recruitment of the ESCRT-III complex. Involved in the trafficking of the plasma membrane ATPase. Its ability to bind ubiquitin plays a central role in endosomal sorting of ubiquitinated cargo proteins by the ESCRT complexes.<ref>PMID:12194858</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 31: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 18824]] | + | [[Category: Large Structures]] |
- | [[Category: Gill, D J]] | + | [[Category: Saccharomyces cerevisiae]] |
- | [[Category: Perisic, O]] | + | [[Category: Gill DJ]] |
- | [[Category: Teo, H]] | + | [[Category: Perisic O]] |
- | [[Category: Williams, R L]] | + | [[Category: Teo H]] |
- | [[Category: Escrt-ii]] | + | [[Category: Williams RL]] |
- | [[Category: Lipid-binding]]
| + | |
- | [[Category: Membrane]]
| + | |
- | [[Category: Metal-binding]]
| + | |
- | [[Category: Multivesicular body]]
| + | |
- | [[Category: Ph domain]]
| + | |
- | [[Category: Protein transport]]
| + | |
- | [[Category: Transport]]
| + | |
- | [[Category: Vps36]]
| + | |
- | [[Category: Zinc]]
| + | |
- | [[Category: Zinc-finger]]
| + | |
| Structural highlights
Function
VPS36_YEAST Component of the ESCRT-II complex, which is required for multivesicular body (MVB) formation and sorting of endosomal cargo proteins into MVBs. The MVB pathway mediates delivery of transmembrane proteins into the lumen of the lysosome for degradation. The ESCRT-II complex is probably involved in the recruitment of the ESCRT-III complex. Involved in the trafficking of the plasma membrane ATPase. Its ability to bind ubiquitin plays a central role in endosomal sorting of ubiquitinated cargo proteins by the ESCRT complexes.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
ESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. Currently, the picture regarding assembly of ESCRTs on endosomes is incomplete. The structure of the conserved heterotrimeric ESCRT-I core presented here shows a fan-like arrangement of three helical hairpins, each corresponding to a different subunit. Vps23/Tsg101 is the central hairpin sandwiched between the other subunits, explaining the critical role of its "steadiness box" in the stability of ESCRT-I. We show that yeast ESCRT-I links directly to ESCRT-II, through a tight interaction of Vps28 (ESCRT-I) with the yeast-specific zinc-finger insertion within the GLUE domain of Vps36 (ESCRT-II). The crystal structure of the GLUE domain missing this insertion reveals it is a split PH domain, with a noncanonical lipid binding pocket that binds PtdIns3P. The simultaneous and reinforcing interactions of ESCRT-II GLUE domain with membranes, ESCRT-I, and ubiquitin are critical for ubiquitinated cargo progression from early to late endosomes.
ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes.,Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL Cell. 2006 Apr 7;125(1):99-111. PMID:16615893[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell. 2002 Aug;3(2):283-9. PMID:12194858
- ↑ Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell. 2006 Apr 7;125(1):99-111. PMID:16615893 doi:10.1016/j.cell.2006.01.047
|