|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==CRYSTAL STRUCTURE OF CLOSTRIDIUM HISTOLYTICUM COLG COLLAGENASE COLLAGEN-BINDING DOMAIN 3B AT 1.65 ANGSTROM RESOLUTION IN PRESENCE OF CALCIUM== | | ==CRYSTAL STRUCTURE OF CLOSTRIDIUM HISTOLYTICUM COLG COLLAGENASE COLLAGEN-BINDING DOMAIN 3B AT 1.65 ANGSTROM RESOLUTION IN PRESENCE OF CALCIUM== |
- | <StructureSection load='1nqd' size='340' side='right' caption='[[1nqd]], [[Resolution|resolution]] 1.65Å' scene=''> | + | <StructureSection load='1nqd' size='340' side='right'caption='[[1nqd]], [[Resolution|resolution]] 1.65Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1nqd]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_histolyticus"_weinberg_and_seguin_1916 "bacillus histolyticus" weinberg and seguin 1916]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NQD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1NQD FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1nqd]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Hathewaya_histolytica Hathewaya histolytica]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NQD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1NQD FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.65Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1nqj|1nqj]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ColG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1498 "Bacillus histolyticus" Weinberg and Seguin 1916])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1nqd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1nqd OCA], [https://pdbe.org/1nqd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1nqd RCSB], [https://www.ebi.ac.uk/pdbsum/1nqd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1nqd ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Microbial_collagenase Microbial collagenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.24.3 3.4.24.3] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1nqd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1nqd OCA], [http://pdbe.org/1nqd PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1nqd RCSB], [http://www.ebi.ac.uk/pdbsum/1nqd PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1nqd ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/COLG_HATHI COLG_HATHI] Clostridial collagenases are among the most efficient degraders of eukaryotic collagen known; saprophytes use collagen as a carbon source while pathogens additionally digest collagen to aid in host colonization. Has both tripeptidylcarboxypeptidase on Gly-X-Y and endopeptidase activities; the endopeptidase cuts within the triple helix region of collagen while tripeptidylcarboxypeptidase successively digests the exposed ends, thus clostridial collagenases can digest large sections of collagen (PubMed:3002446). Active on soluble type I collagen, insoluble collagen, azocoll, soluble PZ-peptide (all collagenase substrates) and gelatin (PubMed:9922257). The full-length protein has collagenase activity, while the in vivo derived C-terminally truncated shorter versions only act on gelatin (PubMed:9922257). In vitro digestion of soluble calf skin collagen fibrils requires both ColG and ColH; ColG forms missing the second collagen-binding domain are also synergistic with ColH, although their overall efficiency is decreased (PubMed:18374061, PubMed:22099748). The activator domain (residues 119-388) and catalytic subdomain (389-670) open and close around substrate using a Gly-rich hinge (387-397), allowing digestion when the protein is closed (PubMed:21947205, PubMed:23703618). Binding of collagen requires Ca(2+) and is inhibited by EGTA; the collagen-binding domain (CBD, S3a plus S3b) specifically recognizes the triple-helical conformation made by 3 collagen protein chains in the triple-helical region (PubMed:11121400). Isolated CBD (S3a plus S3b) binds collagen fibrils and sheets of many tissues (PubMed:11913772).<ref>PMID:11121400</ref> <ref>PMID:11913772</ref> <ref>PMID:18374061</ref> <ref>PMID:18937627</ref> <ref>PMID:21947205</ref> <ref>PMID:22099748</ref> <ref>PMID:23703618</ref> <ref>PMID:24125730</ref> <ref>PMID:28820255</ref> <ref>PMID:3002446</ref> <ref>PMID:9922257</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 20: |
Line 20: |
| </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1nqd ConSurf]. | | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1nqd ConSurf]. |
| <div style="clear:both"></div> | | <div style="clear:both"></div> |
- | <div style="background-color:#fffaf0;"> | |
- | == Publication Abstract from PubMed == | |
- | The crystal structure of a collagen-binding domain (CBD) with an N-terminal domain linker from Clostridium histolyticum class I collagenase was determined at 1.00 A resolution in the absence of calcium (1NQJ) and at 1.65 A resolution in the presence of calcium (1NQD). The mature enzyme is composed of four domains: a metalloprotease domain, a spacing domain and two CBDs. A 12-residue-long linker is found at the N-terminus of each CBD. In the absence of calcium, the CBD reveals a beta-sheet sandwich fold with the linker adopting an alpha-helix. The addition of calcium unwinds the linker and anchors it to the distal side of the sandwich as a new beta-strand. The conformational change of the linker upon calcium binding is confirmed by changes in the Stokes and hydrodynamic radii as measured by size exclusion chromatography and by dynamic light scattering with and without calcium. Furthermore, extensive mutagenesis of conserved surface residues and collagen-binding studies allow us to identify the collagen-binding surface of the protein and propose likely collagen-protein binding models. | |
| | | |
- | A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation.,Wilson JJ, Matsushita O, Okabe A, Sakon J EMBO J. 2003 Apr 15;22(8):1743-52. PMID:12682007<ref>PMID:12682007</ref>
| + | ==See Also== |
- | | + | *[[Collagenase 3D structures|Collagenase 3D structures]] |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 1nqd" style="background-color:#fffaf0;"></div>
| + | |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus histolyticus weinberg and seguin 1916]] | + | [[Category: Hathewaya histolytica]] |
- | [[Category: Microbial collagenase]] | + | [[Category: Large Structures]] |
- | [[Category: Matsushita, O]] | + | [[Category: Matsushita O]] |
- | [[Category: Okabe, A]] | + | [[Category: Okabe A]] |
- | [[Category: Sakon, J]] | + | [[Category: Sakon J]] |
- | [[Category: Wilson, J J]] | + | [[Category: Wilson JJ]] |
- | [[Category: Beta sandwich]]
| + | |
- | [[Category: Calcium]]
| + | |
- | [[Category: Collagen-binding domain]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Metalloprotease]]
| + | |
| Structural highlights
Function
COLG_HATHI Clostridial collagenases are among the most efficient degraders of eukaryotic collagen known; saprophytes use collagen as a carbon source while pathogens additionally digest collagen to aid in host colonization. Has both tripeptidylcarboxypeptidase on Gly-X-Y and endopeptidase activities; the endopeptidase cuts within the triple helix region of collagen while tripeptidylcarboxypeptidase successively digests the exposed ends, thus clostridial collagenases can digest large sections of collagen (PubMed:3002446). Active on soluble type I collagen, insoluble collagen, azocoll, soluble PZ-peptide (all collagenase substrates) and gelatin (PubMed:9922257). The full-length protein has collagenase activity, while the in vivo derived C-terminally truncated shorter versions only act on gelatin (PubMed:9922257). In vitro digestion of soluble calf skin collagen fibrils requires both ColG and ColH; ColG forms missing the second collagen-binding domain are also synergistic with ColH, although their overall efficiency is decreased (PubMed:18374061, PubMed:22099748). The activator domain (residues 119-388) and catalytic subdomain (389-670) open and close around substrate using a Gly-rich hinge (387-397), allowing digestion when the protein is closed (PubMed:21947205, PubMed:23703618). Binding of collagen requires Ca(2+) and is inhibited by EGTA; the collagen-binding domain (CBD, S3a plus S3b) specifically recognizes the triple-helical conformation made by 3 collagen protein chains in the triple-helical region (PubMed:11121400). Isolated CBD (S3a plus S3b) binds collagen fibrils and sheets of many tissues (PubMed:11913772).[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
See Also
References
- ↑ Matsushita O, Koide T, Kobayashi R, Nagata K, Okabe A. Substrate recognition by the collagen-binding domain of Clostridium histolyticum class I collagenase. J Biol Chem. 2001 Mar 23;276(12):8761-70. doi: 10.1074/jbc.M003450200. Epub 2000 , Dec 19. PMID:11121400 doi:http://dx.doi.org/10.1074/jbc.M003450200
- ↑ Toyoshima T, Matsushita O, Minami J, Nishi N, Okabe A, Itano T. Collagen-binding domain of a Clostridium histolyticum collagenase exhibits a broad substrate spectrum both in vitro and in vivo. Connect Tissue Res. 2001;42(4):281-90. doi: 10.3109/03008200109016842. PMID:11913772 doi:http://dx.doi.org/10.3109/03008200109016842
- ↑ McCarthy RC, Spurlin B, Wright MJ, Breite AG, Sturdevant LK, Dwulet CS, Dwulet FE. Development and characterization of a collagen degradation assay to assess purified collagenase used in islet isolation. Transplant Proc. 2008 Mar;40(2):339-42. doi: 10.1016/j.transproceed.2008.01.041. PMID:18374061 doi:http://dx.doi.org/10.1016/j.transproceed.2008.01.041
- ↑ Eckhard U, Schonauer E, Ducka P, Briza P, Nuss D, Brandstetter H. Biochemical characterization of the catalytic domains of three different Clostridial collagenases. Biol Chem. 2009 Jan;390(1):11-8. doi: 10.1515/BC.2009.004. PMID:18937627 doi:http://dx.doi.org/10.1515/BC.2009.004
- ↑ Eckhard U, Schonauer E, Nuss D, Brandstetter H. Structure of collagenase G reveals a chew-and-digest mechanism of bacterial collagenolysis. Nat Struct Mol Biol. 2011 Sep 25;18(10):1109-14. doi: 10.1038/nsmb.2127. PMID:21947205 doi:10.1038/nsmb.2127
- ↑ Breite AG, McCarthy RC, Dwulet FE. Characterization and functional assessment of Clostridium histolyticum class I (C1) collagenases and the synergistic degradation of native collagen in enzyme mixtures containing class II (C2) collagenase. Transplant Proc. 2011 Nov;43(9):3171-5. doi: 10.1016/j.transproceed.2011.09.059. PMID:22099748 doi:http://dx.doi.org/10.1016/j.transproceed.2011.09.059
- ↑ Eckhard U, Schonauer E, Brandstetter H. Structural basis for activity regulation and substrate preference of clostridial collagenases G, H, and T. J Biol Chem. 2013 May 23. PMID:23703618 doi:10.1074/jbc.M112.448548
- ↑ Eckhard U, Huesgen PF, Brandstetter H, Overall CM. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen. J Proteomics. 2014 Apr 4;100:102-14. doi: 10.1016/j.jprot.2013.10.004. Epub 2013 , Oct 11. PMID:24125730 doi:http://dx.doi.org/10.1016/j.jprot.2013.10.004
- ↑ Schonauer E, Kany AM, Haupenthal J, Husecken K, Hoppe IJ, Voos K, Yahiaoui S, Elsasser B, Ducho C, Brandstetter H, Hartmann RW. Discovery of a Potent Inhibitor Class with High Selectivity toward Clostridial Collagenases. J Am Chem Soc. 2017 Sep 13;139(36):12696-12703. doi: 10.1021/jacs.7b06935. Epub, 2017 Aug 31. PMID:28820255 doi:http://dx.doi.org/10.1021/jacs.7b06935
- ↑ Mookhtiar KA, Steinbrink DR, Van Wart HE. Mode of hydrolysis of collagen-like peptides by class I and class II Clostridium histolyticum collagenases: evidence for both endopeptidase and tripeptidylcarboxypeptidase activities. Biochemistry. 1985 Nov 5;24(23):6527-33. doi: 10.1021/bi00344a033. PMID:3002446 doi:http://dx.doi.org/10.1021/bi00344a033
- ↑ Matsushita O, Jung CM, Katayama S, Minami J, Takahashi Y, Okabe A. Gene duplication and multiplicity of collagenases in Clostridium histolyticum. J Bacteriol. 1999 Feb;181(3):923-33. doi: 10.1128/JB.181.3.923-933.1999. PMID:9922257 doi:http://dx.doi.org/10.1128/JB.181.3.923-933.1999
|