2eu8

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:39, 23 August 2023) (edit) (undo)
 
(12 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:2eu8.gif|left|200px]]
 
-
{{Structure
+
==Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (Q199R)==
-
|PDB= 2eu8 |SIZE=350|CAPTION= <scene name='initialview01'>2eu8</scene>, resolution 1.800&Aring;
+
<StructureSection load='2eu8' size='340' side='right'caption='[[2eu8]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
-
|SITE=
+
== Structural highlights ==
-
|LIGAND= <scene name='pdbligand=AP5:BIS(ADENOSINE)-5&#39;-PENTAPHOSPHATE'>AP5</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene>
+
<table><tr><td colspan='2'>[[2eu8]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2EU8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2EU8 FirstGlance]. <br>
-
|ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Adenylate_kinase Adenylate kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.4.3 2.7.4.3] </span>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
-
|GENE= adk ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 Bacillus subtilis])
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AP5:BIS(ADENOSINE)-5-PENTAPHOSPHATE'>AP5</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
|DOMAIN=
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2eu8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2eu8 OCA], [https://pdbe.org/2eu8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2eu8 RCSB], [https://www.ebi.ac.uk/pdbsum/2eu8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2eu8 ProSAT]</span></td></tr>
-
|RELATEDENTRY=[[1zin|1zin]], [[1p3j|1p3j]]
+
</table>
-
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2eu8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2eu8 OCA], [http://www.ebi.ac.uk/pdbsum/2eu8 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2eu8 RCSB]</span>
+
== Function ==
-
}}
+
[https://www.uniprot.org/uniprot/KAD_BACSU KAD_BACSU] Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. This small ubiquitous enzyme involved in the energy metabolism and nucleotide synthesis, is essential for maintenance and cell growth.
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/eu/2eu8_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2eu8 ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
In nature, evolution occurs through the continuous adaptation of a population to its environment. At the molecular level, adaptive changes in protein sequence and expression impact organismal fitness and, consequently, dictate population dynamics. Here, we have used a "weak link" method to favor variations in one gene, allowing adaptation to thermostability to be studied in molecular detail as bacteria were grown continuously for approximately 1500 generations. Surprisingly, only six mutant alleles, representing less than 1% of the possible missense mutations, were observed, suggesting a highly constrained molecular landscape during protein evolution. The changes in organismal fitness were linked directly to incremental increases in enzyme stability and activity maxima and corresponded to the narrow temperature ranges where each mutant enjoyed success within the overall population. Thus, continuous evolution of a single gene permits a quantitative approach that extends from the phenotypes of the microbial populations to their underlying biophysical basis.
-
'''Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (Q199R)'''
+
In vivo molecular evolution reveals biophysical origins of organismal fitness.,Counago R, Chen S, Shamoo Y Mol Cell. 2006 May 19;22(4):441-9. PMID:16713575<ref>PMID:16713575</ref>
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 2eu8" style="background-color:#fffaf0;"></div>
-
==Overview==
+
==See Also==
-
In nature, evolution occurs through the continuous adaptation of a population to its environment. At the molecular level, adaptive changes in protein sequence and expression impact organismal fitness and, consequently, dictate population dynamics. Here, we have used a "weak link" method to favor variations in one gene, allowing adaptation to thermostability to be studied in molecular detail as bacteria were grown continuously for approximately 1500 generations. Surprisingly, only six mutant alleles, representing less than 1% of the possible missense mutations, were observed, suggesting a highly constrained molecular landscape during protein evolution. The changes in organismal fitness were linked directly to incremental increases in enzyme stability and activity maxima and corresponded to the narrow temperature ranges where each mutant enjoyed success within the overall population. Thus, continuous evolution of a single gene permits a quantitative approach that extends from the phenotypes of the microbial populations to their underlying biophysical basis.
+
*[[Adenylate kinase 3D structures|Adenylate kinase 3D structures]]
-
 
+
== References ==
-
==About this Structure==
+
<references/>
-
2EU8 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2EU8 OCA].
+
__TOC__
-
 
+
</StructureSection>
-
==Reference==
+
-
In vivo molecular evolution reveals biophysical origins of organismal fitness., Counago R, Chen S, Shamoo Y, Mol Cell. 2006 May 19;22(4):441-9. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16713575 16713575]
+
-
[[Category: Adenylate kinase]]
+
[[Category: Bacillus subtilis]]
[[Category: Bacillus subtilis]]
-
[[Category: Single protein]]
+
[[Category: Large Structures]]
-
[[Category: Chen, S.]]
+
[[Category: Chen S]]
-
[[Category: Shamoo, Y.]]
+
[[Category: Shamoo Y]]
-
[[Category: adenylate kinase]]
+
-
[[Category: in vivo evolution]]
+
-
[[Category: point mutant]]
+
-
[[Category: thermostability]]
+
-
 
+
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 02:53:51 2008''
+

Current revision

Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (Q199R)

PDB ID 2eu8

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools