1pye
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
==Crystal structure of CDK2 with inhibitor== | ==Crystal structure of CDK2 with inhibitor== | ||
- | <StructureSection load='1pye' size='340' side='right' caption='[[1pye]], [[Resolution|resolution]] 2.00Å' scene=''> | + | <StructureSection load='1pye' size='340' side='right'caption='[[1pye]], [[Resolution|resolution]] 2.00Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1pye]] is a 1 chain structure with sequence from [ | + | <table><tr><td colspan='2'>[[1pye]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PYE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1PYE FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PM1:[2-AMINO-6-(2,6-DIFLUORO-BENZOYL)-IMIDAZO[1,2-A]PYRIDIN-3-YL]-PHENYL-METHANONE'>PM1</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1pye FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pye OCA], [https://pdbe.org/1pye PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1pye RCSB], [https://www.ebi.ac.uk/pdbsum/1pye PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1pye ProSAT]</span></td></tr> | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | |
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/CDK2_HUMAN CDK2_HUMAN] Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis. Phosphorylates CTNNB1, USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2. Interacts with cyclins A, B1, B3, D, or E. Triggers duplication of centrosomes and DNA. Acts at the G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis, and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of cyclin B/CDK1 at the centrosome and in the nucleus. Crucial role in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in human embryonic stem cells (hESCs). Activity of CDK2 is maximal during S phase and G2; activated by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA replication to drive the transition from S phase to mitosis, the G2 phase. EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing. Phosphorylates CABLES1 (By similarity). Cyclin E/CDK2 prevents oxidative stress-mediated Ras-induced senescence by phosphorylating MYC. Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells progress towards mitosis. In response to DNA damage, double-strand break repair by homologous recombination a reduction of CDK2-mediated BRCA2 phosphorylation. Phosphorylation of RB1 disturbs its interaction with E2F1. NPM1 phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication. Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase. Required for vitamin D-mediated growth inhibition by being itself inactivated. Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner. USP37 is activated by phosphorylation and thus triggers G1-S transition. CTNNB1 phosphorylation regulates insulin internalization.<ref>PMID:10499802</ref> <ref>PMID:11051553</ref> <ref>PMID:10995386</ref> <ref>PMID:10995387</ref> <ref>PMID:10884347</ref> <ref>PMID:11113184</ref> <ref>PMID:15800615</ref> <ref>PMID:18372919</ref> <ref>PMID:20147522</ref> <ref>PMID:20079829</ref> <ref>PMID:20935635</ref> <ref>PMID:20195506</ref> <ref>PMID:19966300</ref> <ref>PMID:21262353</ref> <ref>PMID:21596315</ref> <ref>PMID:21319273</ref> <ref>PMID:17495531</ref> |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 21: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pye ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pye ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The protein kinase family represents an enormous opportunity for drug development. However, the current limitation in structural diversity of kinase inhibitors has complicated efforts to identify effective treatments of diseases that involve protein kinase signaling pathways. We have identified a new structural class of protein serine/threonine kinase inhibitors comprising an aminoimidazo[1,2-a]pyridine nucleus. In this report, we describe the first successful use of this class of aza-heterocycles to generate potent inhibitors of cyclin-dependent kinases that compete with ATP for binding to a catalytic subunit of the protein. Co-crystal structures of CDK2 in complex with lead compounds reveal a unique mode of binding. Using this knowledge, a structure-based design approach directed this chemical scaffold toward generating potent and selective CDK2 inhibitors, which selectively inhibited the CDK2-dependent phosphorylation of Rb and induced caspase-3-dependent apoptosis in HCT 116 tumor cells. The discovery of this new class of ATP-site-directed protein kinase inhibitors, aminoimidazo[1,2-a]pyridines, provides the basis for a new medicinal chemistry tool to be used in the search for effective treatments of cancer and other diseases that involve protein kinase signaling pathways. | ||
- | + | ==See Also== | |
- | + | *[[Cyclin-dependent kinase 3D structures|Cyclin-dependent kinase 3D structures]] | |
- | + | ||
- | + | ||
- | + | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Homo sapiens]] |
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Hamdouchi C]] |
- | [[Category: | + | [[Category: Zhang F]] |
- | + | ||
- | + |
Current revision
Crystal structure of CDK2 with inhibitor
|