5ol0
From Proteopedia
(Difference between revisions)
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
==Structure of Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSIR2rp1) in complex with acetylated p53 peptide== | ==Structure of Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSIR2rp1) in complex with acetylated p53 peptide== | ||
| - | <StructureSection load='5ol0' size='340' side='right' caption='[[5ol0]], [[Resolution|resolution]] 1.99Å' scene=''> | + | <StructureSection load='5ol0' size='340' side='right'caption='[[5ol0]], [[Resolution|resolution]] 1.99Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
| - | <table><tr><td colspan='2'>[[5ol0]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5OL0 OCA]. For a <b>guided tour on the structure components</b> use [ | + | <table><tr><td colspan='2'>[[5ol0]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Leishmania_infantum Leishmania infantum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5OL0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5OL0 FirstGlance]. <br> |
| - | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.99Å</td></tr> |
| - | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ol0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ol0 OCA], [https://pdbe.org/5ol0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ol0 RCSB], [https://www.ebi.ac.uk/pdbsum/5ol0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ol0 ProSAT]</span></td></tr> |
</table> | </table> | ||
| - | == Disease == | ||
| - | [[http://www.uniprot.org/uniprot/P53_HUMAN P53_HUMAN]] Note=TP53 is found in increased amounts in a wide variety of transformed cells. TP53 is frequently mutated or inactivated in about 60% of cancers. TP53 defects are found in Barrett metaplasia a condition in which the normally stratified squamous epithelium of the lower esophagus is replaced by a metaplastic columnar epithelium. The condition develops as a complication in approximately 10% of patients with chronic gastroesophageal reflux disease and predisposes to the development of esophageal adenocarcinoma. Defects in TP53 are a cause of esophageal cancer (ESCR) [MIM:[http://omim.org/entry/133239 133239]]. Defects in TP53 are a cause of Li-Fraumeni syndrome (LFS) [MIM:[http://omim.org/entry/151623 151623]]. LFS is an autosomal dominant familial cancer syndrome that in its classic form is defined by the existence of a proband affected by a sarcoma before 45 years with a first degree relative affected by any tumor before 45 years and another first degree relative with any tumor before 45 years or a sarcoma at any age. Other clinical definitions for LFS have been proposed (PubMed:8118819 and PubMed:8718514) and called Li-Fraumeni like syndrome (LFL). In these families affected relatives develop a diverse set of malignancies at unusually early ages. Four types of cancers account for 80% of tumors occurring in TP53 germline mutation carriers: breast cancers, soft tissue and bone sarcomas, brain tumors (astrocytomas) and adrenocortical carcinomas. Less frequent tumors include choroid plexus carcinoma or papilloma before the age of 15, rhabdomyosarcoma before the age of 5, leukemia, Wilms tumor, malignant phyllodes tumor, colorectal and gastric cancers.<ref>PMID:10570149</ref> <ref>PMID:1933902</ref> <ref>PMID:1978757</ref> <ref>PMID:2259385</ref> <ref>PMID:1737852</ref> <ref>PMID:1565144</ref> <ref>PMID:7887414</ref> <ref>PMID:8825920</ref> <ref>PMID:9452042</ref> <ref>PMID:10484981</ref> Defects in TP53 are involved in head and neck squamous cell carcinomas (HNSCC) [MIM:[http://omim.org/entry/275355 275355]]; also known as squamous cell carcinoma of the head and neck. Defects in TP53 are a cause of lung cancer (LNCR) [MIM:[http://omim.org/entry/211980 211980]]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis. Defects in TP53 are a cause of choroid plexus papilloma (CPLPA) [MIM:[http://omim.org/entry/260500 260500]]. Choroid plexus papilloma is a slow-growing benign tumor of the choroid plexus that often invades the leptomeninges. In children it is usually in a lateral ventricle but in adults it is more often in the fourth ventricle. Hydrocephalus is common, either from obstruction or from tumor secretion of cerebrospinal fluid. If it undergoes malignant transformation it is called a choroid plexus carcinoma. Primary choroid plexus tumors are rare and usually occur in early childhood.<ref>PMID:12085209</ref> Defects in TP53 are a cause of adrenocortical carcinoma (ADCC) [MIM:[http://omim.org/entry/202300 202300]]. ADCC is a rare childhood tumor of the adrenal cortex. It occurs with increased frequency in patients with the Beckwith-Wiedemann syndrome and is a component tumor in Li-Fraumeni syndrome.<ref>PMID:11481490</ref> Defects in TP53 are the cause of susceptibility to basal cell carcinoma 7 (BCC7) [MIM:[http://omim.org/entry/614740 614740]]. A common malignant skin neoplasm that typically appears on hair-bearing skin, most commonly on sun-exposed areas. It is slow growing and rarely metastasizes, but has potentialities for local invasion and destruction. It usually develops as a flat, firm, pale area that is small, raised, pink or red, translucent, shiny, and waxy, and the area may bleed following minor injury. Tumor size can vary from a few millimeters to several centimeters in diameter.<ref>PMID:21946351</ref> | ||
== Function == | == Function == | ||
| - | [ | + | [https://www.uniprot.org/uniprot/A0A6L0XH39_LEIIN A0A6L0XH39_LEIIN] |
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99A in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the beta8-beta9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to parasite survival and proliferation. | ||
| + | |||
| + | The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design.,Ronin C, Costa DM, Tavares J, Faria J, Ciesielski F, Ciapetti P, Smith TK, MacDougall J, Cordeiro-da-Silva A, Pemberton IK PLoS One. 2018 Mar 15;13(3):e0193602. doi: 10.1371/journal.pone.0193602., eCollection 2018. PMID:29543820<ref>PMID:29543820</ref> | ||
| + | |||
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
| + | <div class="pdbe-citations 5ol0" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
| - | [[Category: | + | [[Category: Homo sapiens]] |
| - | [[Category: | + | [[Category: Large Structures]] |
| - | [[Category: | + | [[Category: Leishmania infantum]] |
| - | [[Category: | + | [[Category: Ciapetti P]] |
| - | [[Category: | + | [[Category: Ciesielski F]] |
| + | [[Category: Ronin C]] | ||
Current revision
Structure of Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSIR2rp1) in complex with acetylated p53 peptide
| |||||||||||
