|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of CTPR3Y3== | | ==Crystal structure of CTPR3Y3== |
- | <StructureSection load='2wqh' size='340' side='right' caption='[[2wqh]], [[Resolution|resolution]] 2.20Å' scene=''> | + | <StructureSection load='2wqh' size='340' side='right'caption='[[2wqh]], [[Resolution|resolution]] 2.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2wqh]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WQH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2WQH FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2wqh]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WQH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WQH FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=MRD:(4R)-2-METHYLPENTANE-2,4-DIOL'>MRD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2wqh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2wqh OCA], [http://pdbe.org/2wqh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2wqh RCSB], [http://www.ebi.ac.uk/pdbsum/2wqh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2wqh ProSAT]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=MRD:(4R)-2-METHYLPENTANE-2,4-DIOL'>MRD</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2wqh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2wqh OCA], [https://pdbe.org/2wqh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2wqh RCSB], [https://www.ebi.ac.uk/pdbsum/2wqh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2wqh ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
Line 30: |
Line 31: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| + | [[Category: Large Structures]] |
| [[Category: Synthetic construct]] | | [[Category: Synthetic construct]] |
- | [[Category: Kleanthous, C]] | + | [[Category: Kleanthous C]] |
- | [[Category: Krachler, A M]] | + | [[Category: Krachler AM]] |
- | [[Category: Sharma, A]] | + | [[Category: Sharma A]] |
- | [[Category: De novo protein]]
| + | |
- | [[Category: Mutant]]
| + | |
- | [[Category: Tetratricopeptide]]
| + | |
- | [[Category: Tpr domain]]
| + | |
| Structural highlights
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The tetratricopeptide repeat (TPR) motif is a protein-protein interaction module that acts as an organizing centre for complexes regulating a multitude of biological processes. Despite accumulating evidence for the formation of TPR oligomers as an additional level of regulation there is a lack of structural and solution data explaining TPR self-association. In the present work we characterize the trimeric TPR-containing protein YbgF, which is linked to the Tol system in Gram-negative bacteria. By subtracting previously identified TPR consensus residues required for stability of the fold from residues conserved across YbgF homologs, we identified residues involved in oligomerization of the C-terminal YbgF TPR domain. Crafting these residues, which are located in loop regions between TPR motifs, onto the monomeric consensus TPR protein CTPR3 induced the formation of oligomers. The crystal structure of this engineered oligomer shows an asymmetric trimer where stacking interactions between the introduced tyrosines and displacement of the C-terminal hydrophilic capping helix, present in most TPR domains, are key to oligomerization. Asymmetric trimerization of the YbgF TPR domain and CTPR3Y3 leads to the formation of higher order oligomers both in the crystal and in solution. However, such open-ended self-association does not occur in full-length YbgF suggesting that the protein's N-terminal coiled-coil domain restricts further oligomerization. This interpretation is borne out in experiments where the coiled-coil domain of YbgF was engineered onto the N-terminus of CTPR3Y3 and shown to block self-association beyond trimerization. Our study lays the foundations for understanding the structural basis for TPR domain self-association and how such self-association can be regulated in TPR domain-containing proteins.
Self-association of TPR domains: Lessons learned from a designed, consensus-based TPR oligomer.,Krachler AM, Sharma A, Kleanthous C Proteins. 2010 Jul;78(9):2131-43. PMID:20455268[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Krachler AM, Sharma A, Kleanthous C. Self-association of TPR domains: Lessons learned from a designed, consensus-based TPR oligomer. Proteins. 2010 Jul;78(9):2131-43. PMID:20455268 doi:10.1002/prot.22726
|