5ze4

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:52, 22 November 2023) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 5ze4 is ON HOLD until Paper Publication
+
==The structure of holo- structure of DHAD complex with [2Fe-2S] cluster==
 +
<StructureSection load='5ze4' size='340' side='right'caption='[[5ze4]], [[Resolution|resolution]] 2.11&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5ze4]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZE4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5ZE4 FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.11&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ze4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ze4 OCA], [https://pdbe.org/5ze4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ze4 RCSB], [https://www.ebi.ac.uk/pdbsum/5ze4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ze4 ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/ILVD_ARATH ILVD_ARATH] Catalyzes the dehydration of 2,3-dihydroxy-3-isovalerate or 2,3-dihydroxy-3-methylvalerate to the 2-oxo acids 3-methyl-2-oxobutanoate (3MOB) or 3-methyl-2-oxopentanoate (3MOP).<ref>PMID:12242394</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Bioactive natural products have evolved to inhibit specific cellular targets and have served as lead molecules for health and agricultural applications for the past century(1-3). The post-genomics era has brought a renaissance in the discovery of natural products using synthetic-biology tools(4-6). However, compared to traditional bioactivity-guided approaches, genome mining of natural products with specific and potent biological activities remains challenging(4). Here we present the discovery and validation of a potent herbicide that targets a critical metabolic enzyme that is required for plant survival. Our approach is based on the co-clustering of a self-resistance gene in the natural-product biosynthesis gene cluster(7-9), which provides insight into the potential biological activity of the encoded compound. We targeted dihydroxy-acid dehydratase in the branched-chain amino acid biosynthetic pathway in plants; the last step in this pathway is often targeted for herbicide development(10). We show that the fungal sesquiterpenoid aspterric acid, which was discovered using the method described above, is a sub-micromolar inhibitor of dihydroxy-acid dehydratase that is effective as a herbicide in spray applications. The self-resistance gene astD was validated to be insensitive to aspterric acid and was deployed as a transgene in the establishment of plants that are resistant to aspterric acid. This herbicide-resistance gene combination complements the urgent ongoing efforts to overcome weed resistance(11). Our discovery demonstrates the potential of using a resistance-gene-directed approach in the discovery of bioactive natural products.
-
Authors: Zhou, J., Zang, X., Tang, Y., Yan, Y., Gan, J., Wu, L.
+
Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action.,Yan Y, Liu Q, Zang X, Yuan S, Bat-Erdene U, Nguyen C, Gan J, Zhou J, Jacobsen SE, Tang Y Nature. 2018 Jul;559(7714):415-418. doi: 10.1038/s41586-018-0319-4. Epub 2018 Jul, 11. PMID:29995859<ref>PMID:29995859</ref>
-
Description: The structure of holo-structure of DHAD complex with [2Fe-2S] cluster
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
-
[[Category: Gan, J]]
+
<div class="pdbe-citations 5ze4" style="background-color:#fffaf0;"></div>
-
[[Category: Tang, Y]]
+
== References ==
-
[[Category: Wu, L]]
+
<references/>
-
[[Category: Zang, X]]
+
__TOC__
-
[[Category: Zhou, J]]
+
</StructureSection>
-
[[Category: Yan, Y]]
+
[[Category: Arabidopsis thaliana]]
 +
[[Category: Large Structures]]
 +
[[Category: Gan J]]
 +
[[Category: Tang Y]]
 +
[[Category: Wu L]]
 +
[[Category: Yan Y]]
 +
[[Category: Zang X]]
 +
[[Category: Zhou J]]

Current revision

The structure of holo- structure of DHAD complex with [2Fe-2S] cluster

PDB ID 5ze4

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools