|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Co-crystal structure of Ac-AChBPP in complex with alpha-conotoxin LvIA== | | ==Co-crystal structure of Ac-AChBPP in complex with alpha-conotoxin LvIA== |
- | <StructureSection load='5xgl' size='340' side='right' caption='[[5xgl]], [[Resolution|resolution]] 3.44Å' scene=''> | + | <StructureSection load='5xgl' size='340' side='right'caption='[[5xgl]], [[Resolution|resolution]] 3.44Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5xgl]] is a 10 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5XGL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5XGL FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5xgl]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Aplysia_californica Aplysia californica] and [https://en.wikipedia.org/wiki/Conus_lividus Conus lividus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5XGL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5XGL FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.439Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5xgl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5xgl OCA], [http://pdbe.org/5xgl PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5xgl RCSB], [http://www.ebi.ac.uk/pdbsum/5xgl PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5xgl ProSAT]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5xgl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5xgl OCA], [https://pdbe.org/5xgl PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5xgl RCSB], [https://www.ebi.ac.uk/pdbsum/5xgl PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5xgl ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CAIA_CONLI CAIA_CONLI]] Alpha-conotoxins act on postsynaptic membranes, they bind to the nicotinic acetylcholine receptors (nAChR) and thus inhibit them. This toxin blocks alpha-3-beta-2/CHRNA3-CHRNB2 nAChR with high selectivity (IC(50)=8.67 nM (on rat) and 17.5 (on human)) (PubMed:24398291). Has also weaker activity on alpha-6/alpha-3-beta-2-beta-3 (CHRNA6/CHRNA3-CHRNB2-CHRNB3) (IC(50)=108 nM (on rat)), alpha-6/alpha-3-beta-4 (CHRNA6/CHRNA3-CHRNB4) (IC(50)=121 nM (on rat)), alpha-3-beta-4 (CHRNA3-CHRNB4) (IC(50)=148 nM (on rat)), and alpha-7/CHRNA7 nAChRs (IC(50)=3000 nM (on rat)) (PubMed:24398291). When tested on mouse with hot-plate tests, this toxin significantly increases the base pain threshold and shows analgesic effects (PubMed:26742048).<ref>PMID:24398291</ref> <ref>PMID:26742048</ref> | + | [https://www.uniprot.org/uniprot/Q8WSF8_APLCA Q8WSF8_APLCA] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 18: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 5xgl" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 5xgl" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Acetylcholine binding protein 3D structures|Acetylcholine binding protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Luo, S L]] | + | [[Category: Aplysia californica]] |
- | [[Category: Wang, X Q]] | + | [[Category: Conus lividus]] |
- | [[Category: Xu, M Y]] | + | [[Category: Large Structures]] |
- | [[Category: Zhu, X P]] | + | [[Category: Luo SL]] |
- | [[Category: Ac-achbp]] | + | [[Category: Wang XQ]] |
- | [[Category: Alpha-conotoxin]] | + | [[Category: Xu MY]] |
- | [[Category: Co-crystal structure]] | + | [[Category: Zhu XP]] |
- | [[Category: Metal binding protein-toxin complex]]
| + | |
| Structural highlights
Function
Q8WSF8_APLCA
Publication Abstract from PubMed
The alpha3* nAChRs, which are considered to be promising drug targets for problems such as pain, addiction, cardiovascular function, cognitive disorders etc., are found throughout the central and peripheral nervous system. The alpha-conotoxin (alpha-CTx) LvIA has been identified as the most selective inhibitor of alpha3beta2 nAChRs known to date, and it can distinguish the alpha3beta2 nAChR subtype from the alpha6/alpha3beta2beta3 and alpha3beta4 nAChR subtypes. However, the mechanism of its selectivity towards alpha3beta2, alpha6/alpha3beta2beta3, and alpha3beta4 nAChRs remains elusive. Here we report the co-crystal structure of LvIA in complex with Aplysia californica acetylcholine binding protein (Ac-AChBP) at a resolution of 3.4 A. Based on the structure of this complex, together with homology modeling based on other nAChR subtypes and binding affinity assays, we conclude that Asp-11 of LvIA plays an important role in the selectivity of LvIA towards alpha3beta2 and alpha3/alpha6beta2beta3 nAChRs by making a salt bridge with Lys-155 of the rat alpha3 subunit. Asn-9 lies within a hydrophobic pocket that is formed by Met-36, Thr-59, and Phe-119 of the rat beta2 subunit in the alpha3beta2 nAChR model, revealing the reason for its more potent selectivity towards the alpha3beta2 nAChR subtype. These results provide molecular insights that can be used to design ligands that selectively target alpha3beta2 nAChRs, with significant implications for the design of new therapeutic alpha-CTxs.
The crystal structure of Ac-AChBP in complex with alpha-conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes.,Xu M, Zhu X, Yu J, Yu J, Luo S, Wang X Protein Cell. 2017 Sep;8(9):675-685. doi: 10.1007/s13238-017-0426-2. Epub 2017, Jun 5. PMID:28585176[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Xu M, Zhu X, Yu J, Yu J, Luo S, Wang X. The crystal structure of Ac-AChBP in complex with alpha-conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes. Protein Cell. 2017 Sep;8(9):675-685. doi: 10.1007/s13238-017-0426-2. Epub 2017, Jun 5. PMID:28585176 doi:http://dx.doi.org/10.1007/s13238-017-0426-2
|