|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (Q199R)== | | ==Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (Q199R)== |
- | <StructureSection load='2eu8' size='340' side='right' caption='[[2eu8]], [[Resolution|resolution]] 1.80Å' scene=''> | + | <StructureSection load='2eu8' size='340' side='right'caption='[[2eu8]], [[Resolution|resolution]] 1.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2eu8]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2EU8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2EU8 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2eu8]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2EU8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2EU8 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AP5:BIS(ADENOSINE)-5-PENTAPHOSPHATE'>AP5</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1zin|1zin]], [[1p3j|1p3j]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AP5:BIS(ADENOSINE)-5-PENTAPHOSPHATE'>AP5</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">adk ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2eu8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2eu8 OCA], [https://pdbe.org/2eu8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2eu8 RCSB], [https://www.ebi.ac.uk/pdbsum/2eu8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2eu8 ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Adenylate_kinase Adenylate kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.4.3 2.7.4.3] </span></td></tr> | + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2eu8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2eu8 OCA], [http://pdbe.org/2eu8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2eu8 RCSB], [http://www.ebi.ac.uk/pdbsum/2eu8 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2eu8 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/KAD_BACSU KAD_BACSU]] Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. This small ubiquitous enzyme involved in the energy metabolism and nucleotide synthesis, is essential for maintenance and cell growth. | + | [https://www.uniprot.org/uniprot/KAD_BACSU KAD_BACSU] Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. This small ubiquitous enzyme involved in the energy metabolism and nucleotide synthesis, is essential for maintenance and cell growth. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 33: |
Line 31: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Adenylate kinase|Adenylate kinase]] | + | *[[Adenylate kinase 3D structures|Adenylate kinase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Vibrio subtilis ehrenberg 1835]] | + | [[Category: Bacillus subtilis]] |
- | [[Category: Adenylate kinase]] | + | [[Category: Large Structures]] |
- | [[Category: Chen, S]] | + | [[Category: Chen S]] |
- | [[Category: Shamoo, Y]] | + | [[Category: Shamoo Y]] |
- | [[Category: In vivo evolution]]
| + | |
- | [[Category: Point mutant]]
| + | |
- | [[Category: Thermostability]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
KAD_BACSU Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. This small ubiquitous enzyme involved in the energy metabolism and nucleotide synthesis, is essential for maintenance and cell growth.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
In nature, evolution occurs through the continuous adaptation of a population to its environment. At the molecular level, adaptive changes in protein sequence and expression impact organismal fitness and, consequently, dictate population dynamics. Here, we have used a "weak link" method to favor variations in one gene, allowing adaptation to thermostability to be studied in molecular detail as bacteria were grown continuously for approximately 1500 generations. Surprisingly, only six mutant alleles, representing less than 1% of the possible missense mutations, were observed, suggesting a highly constrained molecular landscape during protein evolution. The changes in organismal fitness were linked directly to incremental increases in enzyme stability and activity maxima and corresponded to the narrow temperature ranges where each mutant enjoyed success within the overall population. Thus, continuous evolution of a single gene permits a quantitative approach that extends from the phenotypes of the microbial populations to their underlying biophysical basis.
In vivo molecular evolution reveals biophysical origins of organismal fitness.,Counago R, Chen S, Shamoo Y Mol Cell. 2006 May 19;22(4):441-9. PMID:16713575[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Counago R, Chen S, Shamoo Y. In vivo molecular evolution reveals biophysical origins of organismal fitness. Mol Cell. 2006 May 19;22(4):441-9. PMID:16713575 doi:http://dx.doi.org/10.1016/j.molcel.2006.04.012
|