|
|
| (2 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| | | | |
| | ==Structure of the bacterial pathogens ATPase with substrate AMPPNP== | | ==Structure of the bacterial pathogens ATPase with substrate AMPPNP== |
| - | <StructureSection load='5ybi' size='340' side='right' caption='[[5ybi]], [[Resolution|resolution]] 2.27Å' scene=''> | + | <StructureSection load='5ybi' size='340' side='right'caption='[[5ybi]], [[Resolution|resolution]] 2.27Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5ybi]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5YBI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5YBI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5ybi]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Shigella_flexneri Shigella flexneri]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5YBI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5YBI FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.268Å</td></tr> |
| - | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2obm|2obm]], [[5ybh|5ybh]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ybi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ybi OCA], [https://pdbe.org/5ybi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ybi RCSB], [https://www.ebi.ac.uk/pdbsum/5ybi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ybi ProSAT]</span></td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr>
| + | |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ybi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ybi OCA], [http://pdbe.org/5ybi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ybi RCSB], [http://www.ebi.ac.uk/pdbsum/5ybi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ybi ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/SPAL_SHIFL SPAL_SHIFL]] Required for surface presentation of invasion plasmid antigens. Probable catalytic subunit of a protein translocase. Required for invasion and for secretion of the three IPA proteins. | + | [https://www.uniprot.org/uniprot/SCTN_SHIFL SCTN_SHIFL] ATPase component of the type III secretion system (T3SS), also called injectisome, which is used to inject bacterial effector proteins into eukaryotic host cells (PubMed:26947936, PubMed:27770024, PubMed:29595954). Acts as a molecular motor to provide the energy that is required for the export of proteins (Probable). Required for type III secretion apparatus (T3SA) formation, proper protein secretion, host cell invasion and virulence (PubMed:26947936, PubMed:27770024, PubMed:31162724). May play a critical role in T3SS substrate recognition, disassembly of the effector/chaperone complex and unfolding of the effector in an ATP-dependent manner prior to secretion (By similarity).[UniProtKB:P0A1B9]<ref>PMID:26947936</ref> <ref>PMID:27770024</ref> <ref>PMID:29595954</ref> <ref>PMID:31162724</ref> <ref>PMID:26947936</ref> <ref>PMID:27770024</ref> |
| | + | <div style="background-color:#fffaf0;"> |
| | + | == Publication Abstract from PubMed == |
| | + | Gram-negative bacteria utilize the type III secretion system (T3SS) to inject effector proteins into the host cell cytoplasm, where they subvert cellular functions and assist pathogen invasion. The conserved type III-associated ATPase is critical for the separation of chaperones from effector proteins, the unfolding of effector proteins and translocating them through the narrow channel of the secretion apparatus. However, how ATP hydrolysis is coupled to the mechanical work of the enzyme remains elusive. Herein, we present a complete description of nucleoside triphosphate binding by surface presentation antigens 47 (Spa47) from Shigella flexneri, based on crystal structures containing ATPgammaS, a catalytic magnesium ion and an ordered water molecule. Combining the crystal structures of Spa47-ATPgammaS and unliganded Spa47, we propose conformational changes in Spa47 associated with ATP binding, the binding of ATP induces a conformational change of a highly conserved luminal loop, facilitating ATP hydrolysis by the Spa47 ATPase. Additionally, we identified a specific hydrogen bond critical for ATP recognition and demonstrated that, while ATPgammaS is an ideal analog for probing ATP binding, AMPPNP is a poor ATP mimic. Our findings provide structural insight pertinent for inhibitor design. |
| | + | |
| | + | Structural Insight Into Conformational Changes Induced by ATP Binding in a Type III Secretion-Associated ATPase From Shigella flexneri.,Gao X, Mu Z, Yu X, Qin B, Wojdyla J, Wang M, Cui S Front Microbiol. 2018 Jul 2;9:1468. doi: 10.3389/fmicb.2018.01468. eCollection, 2018. PMID:30013545<ref>PMID:30013545</ref> |
| | + | |
| | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| | + | </div> |
| | + | <div class="pdbe-citations 5ybi" style="background-color:#fffaf0;"></div> |
| | + | == References == |
| | + | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Cui, S]] | + | [[Category: Large Structures]] |
| - | [[Category: Gao, X P]] | + | [[Category: Shigella flexneri]] |
| - | [[Category: Mu, Z X]] | + | [[Category: Cui S]] |
| - | [[Category: Amppnp]] | + | [[Category: Gao XP]] |
| - | [[Category: Atpase]] | + | [[Category: Mu ZX]] |
| - | [[Category: Hexamer]]
| + | |
| - | [[Category: Hydrolase]]
| + | |
| - | [[Category: T3ss]]
| + | |
| Structural highlights
Function
SCTN_SHIFL ATPase component of the type III secretion system (T3SS), also called injectisome, which is used to inject bacterial effector proteins into eukaryotic host cells (PubMed:26947936, PubMed:27770024, PubMed:29595954). Acts as a molecular motor to provide the energy that is required for the export of proteins (Probable). Required for type III secretion apparatus (T3SA) formation, proper protein secretion, host cell invasion and virulence (PubMed:26947936, PubMed:27770024, PubMed:31162724). May play a critical role in T3SS substrate recognition, disassembly of the effector/chaperone complex and unfolding of the effector in an ATP-dependent manner prior to secretion (By similarity).[UniProtKB:P0A1B9][1] [2] [3] [4] [5] [6]
Publication Abstract from PubMed
Gram-negative bacteria utilize the type III secretion system (T3SS) to inject effector proteins into the host cell cytoplasm, where they subvert cellular functions and assist pathogen invasion. The conserved type III-associated ATPase is critical for the separation of chaperones from effector proteins, the unfolding of effector proteins and translocating them through the narrow channel of the secretion apparatus. However, how ATP hydrolysis is coupled to the mechanical work of the enzyme remains elusive. Herein, we present a complete description of nucleoside triphosphate binding by surface presentation antigens 47 (Spa47) from Shigella flexneri, based on crystal structures containing ATPgammaS, a catalytic magnesium ion and an ordered water molecule. Combining the crystal structures of Spa47-ATPgammaS and unliganded Spa47, we propose conformational changes in Spa47 associated with ATP binding, the binding of ATP induces a conformational change of a highly conserved luminal loop, facilitating ATP hydrolysis by the Spa47 ATPase. Additionally, we identified a specific hydrogen bond critical for ATP recognition and demonstrated that, while ATPgammaS is an ideal analog for probing ATP binding, AMPPNP is a poor ATP mimic. Our findings provide structural insight pertinent for inhibitor design.
Structural Insight Into Conformational Changes Induced by ATP Binding in a Type III Secretion-Associated ATPase From Shigella flexneri.,Gao X, Mu Z, Yu X, Qin B, Wojdyla J, Wang M, Cui S Front Microbiol. 2018 Jul 2;9:1468. doi: 10.3389/fmicb.2018.01468. eCollection, 2018. PMID:30013545[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Burgess JL, Jones HB, Kumar P, Toth RT 4th, Middaugh CR, Antony E, Dickenson NE. Spa47 is an oligomerization-activated type three secretion system (T3SS) ATPase from Shigella flexneri. Protein Sci. 2016 May;25(5):1037-48. PMID:26947936 doi:10.1002/pro.2917
- ↑ Burgess JL, Burgess RA, Morales Y, Bouvang JM, Johnson SJ, Dickenson NE. Structural and Biochemical Characterization of Spa47 Provides Mechanistic Insight into Type III Secretion System ATPase Activation and Shigella Virulence Regulation. J Biol Chem. 2016 Oct 21. pii: jbc.M116.755256. PMID:27770024 doi:http://dx.doi.org/10.1074/jbc.M116.755256
- ↑ Case HB, Dickenson NE. MxiN Differentially Regulates Monomeric and Oligomeric Species of the Shigella Type Three Secretion System ATPase Spa47. Biochemistry. 2018 Apr 17;57(15):2266-2277. PMID:29595954 doi:10.1021/acs.biochem.8b00070
- ↑ Demler HJ, Case HB, Morales Y, Bernard AR, Johnson SJ, Dickenson NE. Interfacial amino acids support Spa47 oligomerization and shigella type three secretion system activation. Proteins. 2019 Jun 4. doi: 10.1002/prot.25754. PMID:31162724 doi:http://dx.doi.org/10.1002/prot.25754
- ↑ Burgess JL, Jones HB, Kumar P, Toth RT 4th, Middaugh CR, Antony E, Dickenson NE. Spa47 is an oligomerization-activated type three secretion system (T3SS) ATPase from Shigella flexneri. Protein Sci. 2016 May;25(5):1037-48. PMID:26947936 doi:10.1002/pro.2917
- ↑ Burgess JL, Burgess RA, Morales Y, Bouvang JM, Johnson SJ, Dickenson NE. Structural and Biochemical Characterization of Spa47 Provides Mechanistic Insight into Type III Secretion System ATPase Activation and Shigella Virulence Regulation. J Biol Chem. 2016 Oct 21. pii: jbc.M116.755256. PMID:27770024 doi:http://dx.doi.org/10.1074/jbc.M116.755256
- ↑ Gao X, Mu Z, Yu X, Qin B, Wojdyla J, Wang M, Cui S. Structural Insight Into Conformational Changes Induced by ATP Binding in a Type III Secretion-Associated ATPase From Shigella flexneri. Front Microbiol. 2018 Jul 2;9:1468. doi: 10.3389/fmicb.2018.01468. eCollection, 2018. PMID:30013545 doi:http://dx.doi.org/10.3389/fmicb.2018.01468
|