|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Structure of Cerulean Fluorescent Protein at 1.02 Angstrom resolution== | | ==Structure of Cerulean Fluorescent Protein at 1.02 Angstrom resolution== |
- | <StructureSection load='5oxc' size='340' side='right' caption='[[5oxc]], [[Resolution|resolution]] 1.02Å' scene=''> | + | <StructureSection load='5oxc' size='340' side='right'caption='[[5oxc]], [[Resolution|resolution]] 1.02Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5oxc]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Vaccinia_virus Vaccinia virus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5OXC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5OXC FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5oxc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5OXC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5OXC FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=B2H:'>B2H</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.02Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10245 Vaccinia virus])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=B2H:2-[2-[(1~{R},2~{R})-1-azanyl-2-oxidanyl-propyl]-4-(1~{H}-indol-3-ylmethyl)-5-oxidanyl-imidazol-1-yl]ethanoic+acid'>B2H</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5oxc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5oxc OCA], [http://pdbe.org/5oxc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5oxc RCSB], [http://www.ebi.ac.uk/pdbsum/5oxc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5oxc ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5oxc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5oxc OCA], [https://pdbe.org/5oxc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5oxc RCSB], [https://www.ebi.ac.uk/pdbsum/5oxc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5oxc ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. | + | [https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Green Fluorescent Protein|Green Fluorescent Protein]] | + | *[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Vaccinia virus]] | + | [[Category: Aequorea victoria]] |
- | [[Category: Clavel, D]] | + | [[Category: Large Structures]] |
- | [[Category: Gotthard, G]] | + | [[Category: Clavel D]] |
- | [[Category: Noirclerc-Savoye, M]] | + | [[Category: Gotthard G]] |
- | [[Category: Royant, A]] | + | [[Category: Noirclerc-Savoye M]] |
- | [[Category: Stetten, D von]] | + | [[Category: Royant A]] |
- | [[Category: Cerulean]]
| + | [[Category: Von Stetten D]] |
- | [[Category: Fluorescent protein]]
| + | |
- | [[Category: Hydrogen atom]]
| + | |
- | [[Category: Tryptophan-based chromophore]]
| + | |
| Structural highlights
Function
GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
Publication Abstract from PubMed
ECFP, the first usable cyan fluorescent protein (CFP), was obtained by adapting the tyrosine-based chromophore environment in green fluorescent protein to that of a tryptophan-based one. This first-generation CFP was superseded by the popular Cerulean, CyPet, and SCFP3A that were engineered by rational and random mutagenesis, yet the latter CFPs still exhibit suboptimal properties of pH sensitivity and reversible photobleaching behavior. These flaws were serendipitously corrected in the third-generation CFP mTurquoise and its successors without an obvious rationale. We show here that the evolution process had unexpectedly remodeled the chromophore environment in second-generation CFPs so they would accommodate a different isomer, whose formation is favored by acidic pH or light irradiation and which emits fluorescence much less efficiently. Our results illustrate how fluorescent protein engineering based solely on fluorescence efficiency optimization may affect other photophysical or physicochemical parameters and provide novel insights into the rational evolution of fluorescent proteins with a tryptophan-based chromophore.
Chromophore Isomer Stabilization Is Critical to the Efficient Fluorescence of Cyan Fluorescent Proteins.,Gotthard G, von Stetten D, Clavel D, Noirclerc-Savoye M, Royant A Biochemistry. 2017 Nov 27. pii: 10.1021/acs.biochem.7b01088. doi:, 10.1021/acs.biochem.7b01088. PMID:29148725[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Gotthard G, von Stetten D, Clavel D, Noirclerc-Savoye M, Royant A. Chromophore Isomer Stabilization Is Critical to the Efficient Fluorescence of Cyan Fluorescent Proteins. Biochemistry. 2017 Nov 27. pii: 10.1021/acs.biochem.7b01088. doi:, 10.1021/acs.biochem.7b01088. PMID:29148725 doi:http://dx.doi.org/10.1021/acs.biochem.7b01088
|