|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of a bacterial glutathione transferase== | | ==Crystal structure of a bacterial glutathione transferase== |
- | <StructureSection load='2gdr' size='340' side='right' caption='[[2gdr]], [[Resolution|resolution]] 2.10Å' scene=''> | + | <StructureSection load='2gdr' size='340' side='right'caption='[[2gdr]], [[Resolution|resolution]] 2.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2gdr]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Burkholderia_cepacia_lb400 Burkholderia cepacia lb400]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GDR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2GDR FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2gdr]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Paraburkholderia_xenovorans_LB400 Paraburkholderia xenovorans LB400]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GDR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2GDR FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GSH:GLUTATHIONE'>GSH</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2gdh|2gdh]], [[1f2e|1f2e]], [[1pmt|1pmt]], [[1n2a|1n2a]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GSH:GLUTATHIONE'>GSH</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bphK ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=266265 Burkholderia cepacia LB400])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2gdr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gdr OCA], [https://pdbe.org/2gdr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2gdr RCSB], [https://www.ebi.ac.uk/pdbsum/2gdr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2gdr ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2gdr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gdr OCA], [http://pdbe.org/2gdr PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2gdr RCSB], [http://www.ebi.ac.uk/pdbsum/2gdr PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2gdr ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q59721_PARXL Q59721_PARXL] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 31: |
Line 31: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Glutathione S-transferase|Glutathione S-transferase]] | + | *[[Glutathione S-transferase 3D structures|Glutathione S-transferase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Burkholderia cepacia lb400]] | + | [[Category: Large Structures]] |
- | [[Category: Glutathione transferase]] | + | [[Category: Paraburkholderia xenovorans LB400]] |
- | [[Category: Eltis, L D]] | + | [[Category: Eltis LD]] |
- | [[Category: Fortin, P D]] | + | [[Category: Fortin PD]] |
- | [[Category: Murphy, M E.P]] | + | [[Category: Murphy MEP]] |
- | [[Category: Tocheva, E I]] | + | [[Category: Tocheva EI]] |
- | [[Category: C-term domain is alpha helical]]
| + | |
- | [[Category: Each monomer contains two domain]]
| + | |
- | [[Category: N-term domain is mixed beta sheets and alpha helice]]
| + | |
- | [[Category: Protein homodimer]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
Q59721_PARXL
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Prokaryotic glutathione S-transferases are as diverse as their eukaryotic counterparts but are much less well characterized. BphK from Burkholderia xenovorans LB400 consumes two GSH molecules to reductively dehalogenate chlorinated 2-hydroxy-6-oxo-6-phenyl-2,4-dienoates (HOPDAs), inhibitory polychlorinated biphenyl metabolites. Crystallographic structures of two ternary complexes of BphK were solved to a resolution of 2.1A. In the BphK-GSH-HOPDA complex, GSH and HOPDA molecules occupy the G- and H-subsites, respectively. The thiol nucleophile of the GSH molecule is positioned for SN2 attack at carbon 3 of the bound HOPDA. The respective sulfur atoms of conserved Cys-10 and the bound GSH are within 3.0A, consistent with product release and the formation of a mixed disulfide intermediate. In the BphK-(GSH)2 complex, a GSH molecule occupies each of the two subsites. The three sulfur atoms of the two GSH molecules and Cys-10 are aligned suitably for a disulfide exchange reaction that would regenerate the resting enzyme and yield disulfide-linked GSH molecules. A second conserved residue, His-106, is adjacent to the thiols of Cys-10 and the GSH bound to the G-subsite and thus may stabilize a transition state in the disulfide exchange reaction. Overall, the structures support and elaborate a proposed dehalogenation mechanism for BphK and provide insight into the plasticity of the H-subsite.
Structures of ternary complexes of BphK, a bacterial glutathione S-transferase that reductively dechlorinates polychlorinated biphenyl metabolites.,Tocheva EI, Fortin PD, Eltis LD, Murphy ME J Biol Chem. 2006 Oct 13;281(41):30933-40. Epub 2006 Aug 17. PMID:16920719[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tocheva EI, Fortin PD, Eltis LD, Murphy ME. Structures of ternary complexes of BphK, a bacterial glutathione S-transferase that reductively dechlorinates polychlorinated biphenyl metabolites. J Biol Chem. 2006 Oct 13;281(41):30933-40. Epub 2006 Aug 17. PMID:16920719 doi:10.1074/jbc.M603125200
|