| Structural highlights
Function
HS90A_HUMAN Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.[1] [2]
Publication Abstract from PubMed
Drug-target residence time (tau), one of the main determinants of drug efficacy, remains highly challeng-ing to predict computationally and, therefore, is usually not considered in the early stages of drug de-sign. Here, we present an efficient computational method, tau-random acceleration molecular dynamics (tauRAMD), for the ranking of drug candidates by their residence time and obtaining insights into ligand-target dissociation mechanisms. We assessed tauRAMD on a dataset of 70 diverse drug-like ligands of the N-terminal domain of HSP90alpha, a pharmaceutically important target with a highly flexible binding site, obtaining computed relative residence times with an accuracy of about 2.3tau for 78% of the compounds and less than 2.0tau within congeneric series. Analysis of dissociation trajectories reveals features that af-fect ligand unbinding rates, including transient polar interactions and steric hindrance. These results sug-gest that tauRAMD will be widely applicable as a computationally efficient aid to improving drug resi-dence times during lead optimization.
Estimation of drug-target residence times by tau -random acceleration molecular dynamics simulations.,Kokh DB, Amaral M, Bomke J, Gradler U, Musil D, Buchstaller HP, Dreyer MK, Frech M, Lowinski M, Vallee F, Bianciotto M, Rak A, Wade RC J Chem Theory Comput. 2018 May 16. doi: 10.1021/acs.jctc.8b00230. PMID:29768913[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, Lopez-Ferrer D, Higueras MA, Tarin C, Rodriguez-Crespo I, Vazquez J, Lamas S. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8525-30. Epub 2005 Jun 3. PMID:15937123 doi:10.1073/pnas.0407294102
- ↑ Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem. 2001 May 11;276(19):15571-4. Epub 2001 Mar 23. PMID:11274138 doi:10.1074/jbc.C100055200
- ↑ Kokh DB, Amaral M, Bomke J, Gradler U, Musil D, Buchstaller HP, Dreyer MK, Frech M, Lowinski M, Vallee F, Bianciotto M, Rak A, Wade RC. Estimation of drug-target residence times by tau -random acceleration molecular dynamics simulations. J Chem Theory Comput. 2018 May 16. doi: 10.1021/acs.jctc.8b00230. PMID:29768913 doi:http://dx.doi.org/10.1021/acs.jctc.8b00230
|