6djp
From Proteopedia
(Difference between revisions)
(4 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
==Integrin alpha-v beta-8 in complex with the Fabs 8B8 and 68== | ==Integrin alpha-v beta-8 in complex with the Fabs 8B8 and 68== | ||
- | < | + | <SX load='6djp' size='340' side='right' viewer='molstar' caption='[[6djp]], [[Resolution|resolution]] 4.80Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6djp]] is a 6 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DJP OCA]. For a <b>guided tour on the structure components</b> use [ | + | <table><tr><td colspan='2'>[[6djp]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DJP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6DJP FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.8Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> |
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6djp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6djp OCA], [https://pdbe.org/6djp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6djp RCSB], [https://www.ebi.ac.uk/pdbsum/6djp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6djp ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/ITAV_HUMAN ITAV_HUMAN] The alpha-V integrins are receptors for vitronectin, cytotactin, fibronectin, fibrinogen, laminin, matrix metalloproteinase-2, osteopontin, osteomodulin, prothrombin, thrombospondin and vWF. They recognize the sequence R-G-D in a wide array of ligands. In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. |
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Integrins are conformationally flexible cell surface receptors that survey the extracellular environment for their cognate ligands. Interactions with ligands are thought to be linked to global structural rearrangements involving transitions between bent, extended-closed and extended-open forms. Thus far, structural details are lacking for integrins in the extended conformations due to extensive flexibility between the headpiece and legs in this conformation. Here we present single-particle electron cryomicroscopy structures of human alphavbeta8 integrin in the extended-closed conformation, which has been considered to be a low-affinity intermediate. Our structures show the headpiece rotating about a flexible alphav knee, suggesting a ligand surveillance mechanism for integrins in their extended-closed form. Our model predicts that the extended conformation is mainly stabilized by an interface formed between flexible loops in the upper and lower domains of the alphav leg. Confirming these findings with the alphavbeta3 integrin suggests that our model of stabilizing the extended-closed conformation is generalizable to other integrins. | ||
+ | |||
+ | Cryo-EM structure of the alphavbeta8 integrin reveals a mechanism for stabilizing integrin extension.,Cormier A, Campbell MG, Ito S, Wu S, Lou J, Marks J, Baron JL, Nishimura SL, Cheng Y Nat Struct Mol Biol. 2018 Aug;25(8):698-704. doi: 10.1038/s41594-018-0093-x. Epub, 2018 Jul 30. PMID:30061598<ref>PMID:30061598</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6djp" style="background-color:#fffaf0;"></div> | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Integrin 3D structures|Integrin 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
- | </ | + | </SX> |
- | [[Category: | + | [[Category: Homo sapiens]] |
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Mus musculus]] |
- | [[Category: | + | [[Category: Campbell MG]] |
- | [[Category: | + | [[Category: Cheng Y]] |
- | [[Category: | + | [[Category: Cormier A]] |
- | [[Category: | + | [[Category: Nishimura SL]] |
- | + |
Current revision
Integrin alpha-v beta-8 in complex with the Fabs 8B8 and 68
|