|
|
(3 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Solution NMR structure of ubiquitin-binding motif (UBM2) of human polymerase iota== | | ==Solution NMR structure of ubiquitin-binding motif (UBM2) of human polymerase iota== |
- | <StructureSection load='2l0g' size='340' side='right' caption='[[2l0g]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | + | <StructureSection load='2l0g' size='340' side='right'caption='[[2l0g]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2l0g]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2L0G OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2L0G FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2l0g]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2L0G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2L0G FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2l0f|2l0f]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2l0g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2l0g OCA], [http://pdbe.org/2l0g PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2l0g RCSB], [http://www.ebi.ac.uk/pdbsum/2l0g PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2l0g ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2l0g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2l0g OCA], [https://pdbe.org/2l0g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2l0g RCSB], [https://www.ebi.ac.uk/pdbsum/2l0g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2l0g ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/POLI_HUMAN POLI_HUMAN]] Error-prone DNA polymerase specifically involved in DNA repair. Plays an important role in translesion synthesis, where the normal high-fidelity DNA polymerases cannot proceed and DNA synthesis stalls. Favors Hoogsteen base-pairing in the active site. Inserts the correct base with high-fidelity opposite an adenosine template. Exhibits low fidelity and efficiency opposite a thymidine template, where it will preferentially insert guanosine. May play a role in hypermutation of immunogobulin genes. Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but may not have lyase activity.<ref>PMID:11013228</ref> <ref>PMID:11251121</ref> <ref>PMID:11387224</ref> <ref>PMID:12410315</ref> <ref>PMID:14630940</ref> <ref>PMID:15199127</ref> <ref>PMID:15254543</ref> | + | [https://www.uniprot.org/uniprot/POLI_HUMAN POLI_HUMAN] Error-prone DNA polymerase specifically involved in DNA repair. Plays an important role in translesion synthesis, where the normal high-fidelity DNA polymerases cannot proceed and DNA synthesis stalls. Favors Hoogsteen base-pairing in the active site. Inserts the correct base with high-fidelity opposite an adenosine template. Exhibits low fidelity and efficiency opposite a thymidine template, where it will preferentially insert guanosine. May play a role in hypermutation of immunogobulin genes. Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but may not have lyase activity.<ref>PMID:11013228</ref> <ref>PMID:11251121</ref> <ref>PMID:11387224</ref> <ref>PMID:12410315</ref> <ref>PMID:14630940</ref> <ref>PMID:15199127</ref> <ref>PMID:15254543</ref> |
- | <div style="background-color:#fffaf0;">
| + | |
- | == Publication Abstract from PubMed ==
| + | |
- | Cells have evolved mutagenic bypass mechanisms that prevent stalling of the replication machinery at DNA lesions. This process, translesion DNA synthesis (TLS), involves switching from high-fidelity DNA polymerases to specialized DNA polymerases that replicate through a variety of DNA lesions. In eukaryotes, polymerase switching during TLS is regulated by the DNA damage-triggered monoubiquitylation of PCNA. How the switch operates is unknown, but all TLS polymerases of the so-called Y-family possess PCNA and ubiquitin-binding domains that are important for their function. To gain insight into the structural mechanisms underlying the regulation of TLS by ubiquitylation, we have probed the interaction of ubiquitin with a conserved ubiquitin-binding motif (UBM2) of Y-family polymerase Poliota. Using NMR spectroscopy, we have determined the structure of a complex of human Poliota UBM2 and ubiquitin, revealing a novel ubiquitin recognition fold consisting of two alpha-helices separated by a central trans-proline residue conserved in all UBMs. We show that, different from the majority of ubiquitin complexes characterized to date, ubiquitin residue Ile44 only plays a modest role in the association of ubiquitin with Poliota UBM2. Instead, binding of UBM2 is centered on the recognition of Leu8 in ubiquitin, which is essential for the interaction.
| + | |
- | | + | |
- | Structural Basis of Ubiquitin Recognition by Translesion Synthesis DNA Polymerase iota,Cui G, Benirschke RC, Tuan HF, Juranic N, Macura S, Botuyan MV, Mer G Biochemistry. 2010 Nov 30;49(47):10198-10207. Epub 2010 Nov 4. PMID:21049971<ref>PMID:21049971</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 2l0g" style="background-color:#fffaf0;"></div>
| + | |
| | | |
| ==See Also== | | ==See Also== |
- | *[[DNA polymerase|DNA polymerase]] | + | *[[DNA polymerase 3D structures|DNA polymerase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
- | [[Category: Benirschke, R]] | + | [[Category: Large Structures]] |
- | [[Category: Cui, G]] | + | [[Category: Benirschke R]] |
- | [[Category: Mer, G]] | + | [[Category: Cui G]] |
- | [[Category: Dna polymerase iota]] | + | [[Category: Mer G]] |
- | [[Category: Protein binding]]
| + | |
- | [[Category: Translesion dna synthesis]]
| + | |
- | [[Category: Ubiquitin-binding motif]]
| + | |
| Structural highlights
Function
POLI_HUMAN Error-prone DNA polymerase specifically involved in DNA repair. Plays an important role in translesion synthesis, where the normal high-fidelity DNA polymerases cannot proceed and DNA synthesis stalls. Favors Hoogsteen base-pairing in the active site. Inserts the correct base with high-fidelity opposite an adenosine template. Exhibits low fidelity and efficiency opposite a thymidine template, where it will preferentially insert guanosine. May play a role in hypermutation of immunogobulin genes. Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but may not have lyase activity.[1] [2] [3] [4] [5] [6] [7]
See Also
References
- ↑ Tissier A, Frank EG, McDonald JP, Iwai S, Hanaoka F, Woodgate R. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase iota. EMBO J. 2000 Oct 2;19(19):5259-66. PMID:11013228 doi:http://dx.doi.org/10.1093/emboj/19.19.5259
- ↑ Bebenek K, Tissier A, Frank EG, McDonald JP, Prasad R, Wilson SH, Woodgate R, Kunkel TA. 5'-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro. Science. 2001 Mar 16;291(5511):2156-9. PMID:11251121 doi:http://dx.doi.org/10.1126/science.1058386
- ↑ Frank EG, Tissier A, McDonald JP, Rapic-Otrin V, Zeng X, Gearhart PJ, Woodgate R. Altered nucleotide misinsertion fidelity associated with poliota-dependent replication at the end of a DNA template. EMBO J. 2001 Jun 1;20(11):2914-22. PMID:11387224 doi:http://dx.doi.org/10.1093/emboj/20.11.2914
- ↑ Faili A, Aoufouchi S, Flatter E, Gueranger Q, Reynaud CA, Weill JC. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature. 2002 Oct 31;419(6910):944-7. PMID:12410315 doi:http://dx.doi.org/10.1038/nature01117
- ↑ Haracska L, Prakash L, Prakash S. A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair. Genes Dev. 2003 Nov 15;17(22):2777-85. PMID:14630940 doi:10.1101/gad.1146103
- ↑ Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, Lloyd RS, Prakash S, Prakash L. Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol. 2004 Jul;24(13):5687-93. PMID:15199127 doi:http://dx.doi.org/10.1128/MCB.24.13.5687-5693.2004
- ↑ Nair DT, Johnson RE, Prakash S, Prakash L, Aggarwal AK. Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nature. 2004 Jul 15;430(6997):377-80. PMID:15254543 doi:10.1038/nature02692
|