6e1q
From Proteopedia
(Difference between revisions)
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==AtGH3.15 acyl acid amido synthetase in complex with 2,4-DB== | |
+ | <StructureSection load='6e1q' size='340' side='right'caption='[[6e1q]], [[Resolution|resolution]] 2.15Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[6e1q]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6E1Q OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6E1Q FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.148Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CFA:(2,4-DICHLOROPHENOXY)ACETIC+ACID'>CFA</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6e1q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6e1q OCA], [https://pdbe.org/6e1q PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6e1q RCSB], [https://www.ebi.ac.uk/pdbsum/6e1q PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6e1q ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/GH315_ARATH GH315_ARATH] Indole-3-acetic acid-amido (IAA) synthetase that catalyzes the conjugation of amino acids to auxin specifically using the auxin precursor indole-3-butyric acid (IBA) and glutamine and, possibly, cysteine as substrates (PubMed:29462792, PubMed:30315112). Displays high catalytic activity with the auxinic phenoxyalkanoic acid herbicides 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB) and to some extent 2,4-dichlorophenoxylacetic acid (2,4-D) as substrates, thus confering resistance to herbicides (PubMed:30315112).<ref>PMID:29462792</ref> <ref>PMID:30315112</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Herbicide-resistance traits are the most widely used agriculture biotechnology products. Yet, to maintain their effectiveness and to mitigate selection of herbicide-resistant weeds, the discovery of new resistance traits that use different chemical modes of action is essential. In plants, the Gretchen Hagen 3 (GH3) acyl acid amido synthetases catalyze the conjugation of amino acids to jasmonate and auxin phytohormones. This reaction chemistry has not been explored as a possible approach for herbicide modification and inactivation. Here, we examined a set of Arabidopsis GH3 proteins that use the auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) as substrates along with the corresponding auxinic phenoxyalkanoic acid herbicides 2,4-dichlorophenoxylacetic acid (2,4-D) and 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB). The IBA-specific AtGH3.15 protein displayed high catalytic activity with 2,4-DB, which was comparable to its activity with IBA. Screening of phenoxyalkanoic and phenylalkyl acids indicated that side-chain length of alkanoic and alkyl acids is a key feature of AtGH3.15's substrate preference. The X-ray crystal structure of the AtGH3.15*2,4-DB complex revealed how the herbicide binds in the active site. In root elongation assays, Arabidopsis AtGH3.15-knockout and -overexpression lines grown in the presence of 2,4-DB exhibited hypersensitivity and tolerance, respectively, indicating that the AtGH3.15-catalyzed modification inactivates 2,4-DB. These findings suggest a potential use for AtGH3.15, and perhaps other GH3 proteins, as herbicide-modifying enzymes that employ a mode of action different from those of currently available herbicide resistance traits. | ||
- | + | Modification of auxinic phenoxyalkanoic acid herbicides by the acyl acid amido synthetase GH3.15 from Arabidopsis.,Sherp AM, Lee SG, Schraft E, Jez JM J Biol Chem. 2018 Oct 12. pii: RA118.004975. doi: 10.1074/jbc.RA118.004975. PMID:30315112<ref>PMID:30315112</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
+ | <div class="pdbe-citations 6e1q" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Arabidopsis thaliana]] | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Jez JM]] | ||
+ | [[Category: Lee SG]] | ||
+ | [[Category: Sharp AM]] |
Current revision
AtGH3.15 acyl acid amido synthetase in complex with 2,4-DB
|