6dbr

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:50, 23 October 2024) (edit) (undo)
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
==Cryo-EM structure of RAG in complex with one melted RSS and one unmelted RSS==
==Cryo-EM structure of RAG in complex with one melted RSS and one unmelted RSS==
-
<StructureSection load='6dbr' size='340' side='right' caption='[[6dbr]], [[Resolution|resolution]] 4.00&Aring;' scene=''>
+
<SX load='6dbr' size='340' side='right' viewer='molstar' caption='[[6dbr]], [[Resolution|resolution]] 4.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6dbr]] is a 8 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DBR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6DBR FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6dbr]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Danio_rerio Danio rerio] and [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DBR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6DBR FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6dbi|6dbi]], [[6dbj|6dbj]], [[6dbl|6dbl]], [[6dbo|6dbo]], [[6dbq|6dbq]], [[6dbu|6dbu]], [[6dbv|6dbv]], [[6dbw|6dbw]], [[6dbx|6dbx]]</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/RING-type_E3_ubiquitin_transferase RING-type E3 ubiquitin transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.2.27 2.3.2.27] </span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6dbr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dbr OCA], [https://pdbe.org/6dbr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6dbr RCSB], [https://www.ebi.ac.uk/pdbsum/6dbr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6dbr ProSAT]</span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6dbr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dbr OCA], [http://pdbe.org/6dbr PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6dbr RCSB], [http://www.ebi.ac.uk/pdbsum/6dbr PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6dbr ProSAT]</span></td></tr>
+
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/MALE_ECOLI MALE_ECOLI]] Involved in the high-affinity maltose membrane transport system MalEFGK. Initial receptor for the active transport of and chemotaxis toward maltooligosaccharides.
+
[https://www.uniprot.org/uniprot/MALE_ECOLI MALE_ECOLI] Involved in the high-affinity maltose membrane transport system MalEFGK. Initial receptor for the active transport of and chemotaxis toward maltooligosaccharides.[https://www.uniprot.org/uniprot/RAG1_DANRE RAG1_DANRE] Catalytic component of the RAG complex, a multiprotein complex that mediates the DNA cleavage phase during V(D)J recombination. V(D)J recombination assembles a diverse repertoire of immunoglobulin and T-cell receptor genes in developing B and T lymphocytes through rearrangement of different V (variable), in some cases D (diversity), and J (joining) gene segments. In the RAG complex, RAG1 mediates the DNA-binding to the conserved recombination signal sequences (RSS) and catalyzes the DNA cleavage activities by introducing a double-strand break between the RSS and the adjacent coding segment. RAG2 is not a catalytic component but is required for all known catalytic activities. DNA cleavage occurs in 2 steps: a first nick is introduced in the top strand immediately upstream of the heptamer, generating a 3'-hydroxyl group that can attack the phosphodiester bond on the opposite strand in a direct transesterification reaction, thereby creating 4 DNA ends: 2 hairpin coding ends and 2 blunt, 5'-phosphorylated ends. In addition to its endonuclease activity, RAG1 also acts as a E3 ubiquitin-protein ligase that mediates monoubiquitination of histone H3. Histone H3 monoubiquitination is required for the joining step of V(D)J recombination (By similarity).
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The mechanism for initiating DNA cleavage by DDE-family enzymes, including the RAG endonuclease, which initiates V(D)J recombination, is not well understood. Here we report six cryo-EM structures of zebrafish RAG in complex with one or two intact recombination signal sequences (RSSs), at up to 3.9-A resolution. Unexpectedly, these structures reveal DNA melting at the heptamer of the RSSs, thus resulting in a corkscrew-like rotation of coding-flank DNA and the positioning of the scissile phosphate in the active site. Substrate binding is associated with dimer opening and a piston-like movement in RAG1, first outward to accommodate unmelted DNA and then inward to wedge melted DNA. These precleavage complexes show limited base-specific contacts of RAG at the conserved terminal CAC/GTG sequence of the heptamer, thus suggesting conservation based on a propensity to unwind. CA and TG overwhelmingly dominate terminal sequences in transposons and retrotransposons, thereby implicating a universal mechanism for DNA melting during the initiation of retroviral integration and DNA transposition.
 +
 
 +
DNA melting initiates the RAG catalytic pathway.,Ru H, Mi W, Zhang P, Alt FW, Schatz DG, Liao M, Wu H Nat Struct Mol Biol. 2018 Aug;25(8):732-742. doi: 10.1038/s41594-018-0098-5. Epub, 2018 Jul 30. PMID:30061602<ref>PMID:30061602</ref>
 +
 
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6dbr" style="background-color:#fffaf0;"></div>
 +
 
 +
==See Also==
 +
*[[Recombination-activating gene 3D structures|Recombination-activating gene 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
-
</StructureSection>
+
</SX>
-
[[Category: RING-type E3 ubiquitin transferase]]
+
[[Category: Danio rerio]]
-
[[Category: Liao, M]]
+
[[Category: Escherichia coli K-12]]
-
[[Category: Mi, W]]
+
[[Category: Large Structures]]
-
[[Category: Ru, H]]
+
[[Category: Liao M]]
-
[[Category: Wu, H]]
+
[[Category: Mi W]]
-
[[Category: Melted rss]]
+
[[Category: Ru H]]
-
[[Category: Rag complex]]
+
[[Category: Wu H]]
-
[[Category: Recombination-dna complex]]
+
-
[[Category: Unmelted rss]]
+

Current revision

Cryo-EM structure of RAG in complex with one melted RSS and one unmelted RSS

6dbr, resolution 4.00Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools