|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of L34A CzrA in the Zn(II)bound state== | | ==Crystal structure of L34A CzrA in the Zn(II)bound state== |
- | <StructureSection load='6cda' size='340' side='right' caption='[[6cda]], [[Resolution|resolution]] 2.00Å' scene=''> | + | <StructureSection load='6cda' size='340' side='right'caption='[[6cda]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6cda]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"micrococcus_aureus"_(rosenbach_1884)_zopf_1885 "micrococcus aureus" (rosenbach 1884) zopf 1885]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CDA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6CDA FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6cda]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CDA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6CDA FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">rzcA, CzrA, czrA, AFO97_05125, B9Z04_11610, B9Z08_13310, BJI53_13345, BN1321_350009, EP54_06885, EQ90_13065, ERS072738_01903, ERS072840_01825, HMPREF3211_00009 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1280 "Micrococcus aureus" (Rosenbach 1884) Zopf 1885])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6cda FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cda OCA], [http://pdbe.org/6cda PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6cda RCSB], [http://www.ebi.ac.uk/pdbsum/6cda PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6cda ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6cda FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cda OCA], [https://pdbe.org/6cda PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6cda RCSB], [https://www.ebi.ac.uk/pdbsum/6cda PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6cda ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/O85142_STAAU O85142_STAAU] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Capdevila, D A]] | + | [[Category: Large Structures]] |
- | [[Category: Giedroc, D P]] | + | [[Category: Staphylococcus aureus]] |
- | [[Category: Gonzalez-Gutierrez, G]] | + | [[Category: Capdevila DA]] |
- | [[Category: Arsr]] | + | [[Category: Giedroc DP]] |
- | [[Category: Dna binding protein]] | + | [[Category: Gonzalez-Gutierrez G]] |
- | [[Category: Transcription]]
| + | |
- | [[Category: Transcription regulator]]
| + | |
- | [[Category: Zn-binding protein]]
| + | |
| Structural highlights
Function
O85142_STAAU
Publication Abstract from PubMed
Allostery is a regulatory phenomenon whereby ligand binding to one site influences the binding of the same or a different ligand to another site on a macromolecule. The physical origins of allosteric regulation remain under intense investigation. In general terms, ligand-induced structural changes, perturbations of residue-specific dynamics, and surrounding solvent molecules all potentially contribute to the global energetics of allostery. While the role of solvent is generally well understood in regulatory events associated with major protein structural rearrangements, the degree to which protein dynamics impact solvent degrees of freedom is unclear, particularly in cases of dynamically-driven allostery. With the aid of new crystal structures, extensive calorimetric and residue-specific dynamics studies over a range of timescales and temperatures, we dissect for the first time the relative degree to which changes in solvent entropy and residue-specific dynamics impact dynamically-driven, allosteric inhibition of DNA binding by Zn in the zinc efflux repressor, CzrA (chromosomal zinc-regulated repressor). We show that non-native residue-specific dynamics in allosterically impaired CzrA mutants are accompanied by significant perturbations in solvent entropy that cannot be predicted from crystal structures. We conclude that functional dynamics are not necessarily restricted to protein residues, but involve surface water molecules that may be responding to ligand (Zn)-mediated perturbations in protein internal motions that define the conformational ensemble, rather than major structural rearrangements.
Functional role of solvent entropy and conformational entropy of metal binding in dynamically-driven allostery.,Capdevila DA, Edmonds KA, Campanello G, Wu H, Gonzalez-Gutierrez G, Giedroc DP J Am Chem Soc. 2018 Jun 28. doi: 10.1021/jacs.8b02129. PMID:29953213[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Capdevila DA, Edmonds KA, Campanello G, Wu H, Gonzalez-Gutierrez G, Giedroc DP. Functional role of solvent entropy and conformational entropy of metal binding in dynamically-driven allostery. J Am Chem Soc. 2018 Jun 28. doi: 10.1021/jacs.8b02129. PMID:29953213 doi:http://dx.doi.org/10.1021/jacs.8b02129
|