|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Ensemble refinement of the crystal structure of GALT-like protein from Arabidopsis thaliana At5g18200== | | ==Ensemble refinement of the crystal structure of GALT-like protein from Arabidopsis thaliana At5g18200== |
- | <StructureSection load='2q4l' size='340' side='right' caption='[[2q4l]], [[Resolution|resolution]] 2.30Å' scene=''> | + | <StructureSection load='2q4l' size='340' side='right'caption='[[2q4l]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2q4l]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Q4L OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2Q4L FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2q4l]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Q4L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Q4L FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1zwj|1zwj]], [[1z84|1z84]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">At5g18200, MRG7_16 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2q4l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2q4l OCA], [https://pdbe.org/2q4l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2q4l RCSB], [https://www.ebi.ac.uk/pdbsum/2q4l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2q4l ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/UDP-glucose--hexose-1-phosphate_uridylyltransferase UDP-glucose--hexose-1-phosphate uridylyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.12 2.7.7.12] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2q4l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2q4l OCA], [http://pdbe.org/2q4l PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2q4l RCSB], [http://www.ebi.ac.uk/pdbsum/2q4l PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2q4l ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/AGLUP_ARATH AGLUP_ARATH] Catalyzes the conversion of ADP-glucose and inorganic phosphate (Pi) into glucose-1-phosphate and ADP. Does not possess galactose-1-phosphate uridylyltransferase activity.<ref>PMID:16519510</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 33: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Arath]] | + | [[Category: Arabidopsis thaliana]] |
- | [[Category: UDP-glucose--hexose-1-phosphate uridylyltransferase]] | + | [[Category: Large Structures]] |
- | [[Category: Structural genomic]]
| + | [[Category: Kondrashov DA]] |
- | [[Category: Kondrashov, D A]] | + | [[Category: Levin EJ]] |
- | [[Category: Levin, E J]] | + | [[Category: Phillips Jr GN]] |
- | [[Category: Phillips, G N]] | + | [[Category: Wesenberg GE]] |
- | [[Category: Wesenberg, G E]] | + | |
- | [[Category: At5g18200]]
| + | |
- | [[Category: Cesg]]
| + | |
- | [[Category: Ensemble refinement]]
| + | |
- | [[Category: Galt]]
| + | |
- | [[Category: PSI, Protein structure initiative]]
| + | |
- | [[Category: Refinement methodology development]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
AGLUP_ARATH Catalyzes the conversion of ADP-glucose and inorganic phosphate (Pi) into glucose-1-phosphate and ADP. Does not possess galactose-1-phosphate uridylyltransferase activity.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
X-ray crystallography typically uses a single set of coordinates and B factors to describe macromolecular conformations. Refinement of multiple copies of the entire structure has been previously used in specific cases as an alternative means of representing structural flexibility. Here, we systematically validate this method by using simulated diffraction data, and we find that ensemble refinement produces better representations of the distributions of atomic positions in the simulated structures than single-conformer refinements. Comparison of principal components calculated from the refined ensembles and simulations shows that concerted motions are captured locally, but that correlations dissipate over long distances. Ensemble refinement is also used on 50 experimental structures of varying resolution and leads to decreases in R(free) values, implying that improvements in the representation of flexibility observed for the simulated structures may apply to real structures. These gains are essentially independent of resolution or data-to-parameter ratio, suggesting that even structures at moderate resolution can benefit from ensemble refinement.
Ensemble refinement of protein crystal structures: validation and application.,Levin EJ, Kondrashov DA, Wesenberg GE, Phillips GN Jr Structure. 2007 Sep;15(9):1040-52. PMID:17850744[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ McCoy JG, Arabshahi A, Bitto E, Bingman CA, Ruzicka FJ, Frey PA, Phillips GN Jr. Structure and mechanism of an ADP-glucose phosphorylase from Arabidopsis thaliana. Biochemistry. 2006 Mar 14;45(10):3154-62. PMID:16519510 doi:10.1021/bi052232m
- ↑ Levin EJ, Kondrashov DA, Wesenberg GE, Phillips GN Jr. Ensemble refinement of protein crystal structures: validation and application. Structure. 2007 Sep;15(9):1040-52. PMID:17850744 doi:http://dx.doi.org/10.1016/j.str.2007.06.019
|