|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Complex structure of WsaF with dTDP== | | ==Complex structure of WsaF with dTDP== |
- | <StructureSection load='2x0e' size='340' side='right' caption='[[2x0e]], [[Resolution|resolution]] 2.81Å' scene=''> | + | <StructureSection load='2x0e' size='340' side='right'caption='[[2x0e]], [[Resolution|resolution]] 2.81Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2x0e]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_12980 Atcc 12980]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2X0E OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2X0E FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2x0e]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Geobacillus_stearothermophilus Geobacillus stearothermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2X0E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2X0E FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=TYD:THYMIDINE-5-DIPHOSPHATE'>TYD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.81Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2x0d|2x0d]], [[2x0f|2x0f]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=TYD:THYMIDINE-5-DIPHOSPHATE'>TYD</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2x0e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2x0e OCA], [http://pdbe.org/2x0e PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2x0e RCSB], [http://www.ebi.ac.uk/pdbsum/2x0e PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2x0e ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2x0e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2x0e OCA], [https://pdbe.org/2x0e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2x0e RCSB], [https://www.ebi.ac.uk/pdbsum/2x0e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2x0e ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q7BG50_GEOSE Q7BG50_GEOSE] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 31: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 12980]] | + | [[Category: Geobacillus stearothermophilus]] |
- | [[Category: Hagelueken, G]] | + | [[Category: Large Structures]] |
- | [[Category: Naismith, J H]] | + | [[Category: Hagelueken G]] |
- | [[Category: Steiner, K]] | + | [[Category: Naismith JH]] |
- | [[Category: Gt4 family]] | + | [[Category: Steiner K]] |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
Q7BG50_GEOSE
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Carbohydrate polymers are medically and industrially important. The S-layer of many Gram-positive organisms comprises protein and carbohydrate polymers and forms an almost paracrystalline array on the cell surface. Not only is this array important for the bacteria but it has potential application in the manufacture of commercially important polysaccharides and glycoconjugates as well. The S-layer glycoprotein glycan from Geobacillus stearothermophilus NRS 2004/3a is mainly composed of repeating units of three rhamnose sugars linked by alpha-1,3-, alpha-1,2-, and beta-1,2-linkages. The formation of the beta-1,2-linkage is catalysed by the enzyme WsaF. The rational use of this system is hampered by the fact that WsaF and other enzymes in the pathway share very little homology to other enzymes. We report the structural and biochemical characterisation of WsaF, the first such rhamnosyltransferase to be characterised. Structural work was aided by the surface entropy reduction method. The enzyme has two domains, the N-terminal domain, which binds the acceptor (the growing rhamnan chain), and the C-terminal domain, which binds the substrate (dTDP-beta-l-rhamnose). The structure of WsaF bound to dTDP and dTDP-beta-l-rhamnose coupled to biochemical analysis identifies the residues that underlie catalysis and substrate recognition. We have constructed and tested by site-directed mutagenesis a model for acceptor recognition.
Structural basis of substrate binding in WsaF, a rhamnosyltransferase from Geobacillus stearothermophilus.,Steiner K, Hagelueken G, Messner P, Schaffer C, Naismith JH J Mol Biol. 2010 Mar 26;397(2):436-47. Epub 2010 Jan 22. PMID:20097205[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Steiner K, Hagelueken G, Messner P, Schaffer C, Naismith JH. Structural basis of substrate binding in WsaF, a rhamnosyltransferase from Geobacillus stearothermophilus. J Mol Biol. 2010 Mar 26;397(2):436-47. Epub 2010 Jan 22. PMID:20097205 doi:10.1016/j.jmb.2010.01.035
|