|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of Biphenyl dioxygenase variant RR41 with dibenzofuran== | | ==Crystal structure of Biphenyl dioxygenase variant RR41 with dibenzofuran== |
- | <StructureSection load='2yfj' size='340' side='right' caption='[[2yfj]], [[Resolution|resolution]] 2.15Å' scene=''> | + | <StructureSection load='2yfj' size='340' side='right'caption='[[2yfj]], [[Resolution|resolution]] 2.15Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2yfj]] is a 12 chain structure with sequence from [http://en.wikipedia.org/wiki/Burkholderia_cepacia_lb400 Burkholderia cepacia lb400]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YFJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2YFJ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2yfj]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Paraburkholderia_xenovorans_LB400 Paraburkholderia xenovorans LB400]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YFJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2YFJ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=1IT:DIBENZOFURAN'>1IT</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.15Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2xsh|2xsh]], [[2xrx|2xrx]], [[2xso|2xso]], [[2xr8|2xr8]], [[2yfl|2yfl]], [[2yfi|2yfi]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1IT:DIBENZOFURAN'>1IT</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Biphenyl_2,3-dioxygenase Biphenyl 2,3-dioxygenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.12.18 1.14.12.18] </span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2yfj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2yfj OCA], [https://pdbe.org/2yfj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2yfj RCSB], [https://www.ebi.ac.uk/pdbsum/2yfj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2yfj ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2yfj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2yfj OCA], [http://pdbe.org/2yfj PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2yfj RCSB], [http://www.ebi.ac.uk/pdbsum/2yfj PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2yfj ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/BPHE_BURXL BPHE_BURXL]] The beta subunit may be responsible for the substrate specificity of the enzyme. | + | [https://www.uniprot.org/uniprot/BPHA_PARXL BPHA_PARXL] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Dioxygenase|Dioxygenase]] | + | *[[Dioxygenase 3D structures|Dioxygenase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Biphenyl 2,3-dioxygenase]] | + | [[Category: Large Structures]] |
- | [[Category: Burkholderia cepacia lb400]] | + | [[Category: Paraburkholderia xenovorans LB400]] |
- | [[Category: Bolin, J T]] | + | [[Category: Bolin JT]] |
- | [[Category: Kumar, P]] | + | [[Category: Kumar P]] |
- | [[Category: Sylvestre, M]] | + | [[Category: Sylvestre M]] |
- | [[Category: Oxidoreductase]]
| + | |
| Structural highlights
Function
BPHA_PARXL
Publication Abstract from PubMed
Rieske-type oxygenases are promising biocatalysts for the destruction of persistent pollutants or for the synthesis of fine chemicals. In this work, we explored pathways through which Rieske-type oxygenases evolve to expand their substrate range. BphAE(p4), a variant biphenyl dioxygenase generated from Burkholderia xenovorans LB400 BphAE(LB400) by the double substitution T335A/F336M, and BphAE(RR41), obtained by changing Asn(338), Ile(341), and Leu(409) of BphAE(p4) to Gln(338), Val(341), and Phe(409), metabolize dibenzofuran two and three times faster than BphAE(LB400), respectively. Steady-state kinetic measurements of single- and multiple-substitution mutants of BphAE(LB400) showed that the single T335A and the double N338Q/L409F substitutions contribute significantly to enhanced catalytic activity toward dibenzofuran. Analysis of crystal structures showed that the T335A substitution relieves constraints on a segment lining the catalytic cavity, allowing a significant displacement in response to dibenzofuran binding. The combined N338Q/L409F substitutions alter substrate-induced conformational changes of protein groups involved in subunit assembly and in the chemical steps of the reaction. This suggests a responsive induced fit mechanism that retunes the alignment of protein atoms involved in the chemical steps of the reaction. These enzymes can thus expand their substrate range through mutations that alter the constraints or plasticity of the catalytic cavity to accommodate new substrates or that alter the induced fit mechanism required to achieve proper alignment of reaction-critical atoms or groups.
Retuning Rieske-type Oxygenases to Expand Substrate Range.,Mohammadi M, Viger JF, Kumar P, Barriault D, Bolin JT, Sylvestre M J Biol Chem. 2011 Aug 5;286(31):27612-21. Epub 2011 Jun 8. PMID:21653696[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Mohammadi M, Viger JF, Kumar P, Barriault D, Bolin JT, Sylvestre M. Retuning Rieske-type Oxygenases to Expand Substrate Range. J Biol Chem. 2011 Aug 5;286(31):27612-21. Epub 2011 Jun 8. PMID:21653696 doi:10.1074/jbc.M111.255174
|