2xok

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (10:35, 20 December 2023) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
==Refined structure of yeast F1c10 ATPase complex to 3 A resolution==
==Refined structure of yeast F1c10 ATPase complex to 3 A resolution==
-
<StructureSection load='2xok' size='340' side='right' caption='[[2xok]], [[Resolution|resolution]] 3.01&Aring;' scene=''>
+
<StructureSection load='2xok' size='340' side='right'caption='[[2xok]], [[Resolution|resolution]] 3.01&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[2xok]] is a 19 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XOK OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2XOK FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[2xok]] is a 19 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XOK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2XOK FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.01&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2wpd|2wpd]]</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2xok FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xok OCA], [https://pdbe.org/2xok PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2xok RCSB], [https://www.ebi.ac.uk/pdbsum/2xok PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2xok ProSAT]</span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2xok FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xok OCA], [http://pdbe.org/2xok PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2xok RCSB], [http://www.ebi.ac.uk/pdbsum/2xok PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2xok ProSAT]</span></td></tr>
+
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/ATP9_YEAST ATP9_YEAST]] Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain. A homomeric c-ring of probably 10 subunits is part of the complex rotary element. [[http://www.uniprot.org/uniprot/ATPD_YEAST ATPD_YEAST]] Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP turnover in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and of the central stalk which is part of the complex rotary element. Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. [[http://www.uniprot.org/uniprot/ATPA_YEAST ATPA_YEAST]] Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. Subunit alpha does not bear the catalytic high-affinity ATP-binding sites (By similarity). [[http://www.uniprot.org/uniprot/ATPG_YEAST ATPG_YEAST]] Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and the central stalk which is part of the complex rotary element. The gamma subunit protrudes into the catalytic domain formed of alpha(3)beta(3). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. [[http://www.uniprot.org/uniprot/ATPB_YEAST ATPB_YEAST]] Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits.
+
[https://www.uniprot.org/uniprot/E9P9X4_YEASX E9P9X4_YEASX]
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 32: Line 31:
==See Also==
==See Also==
-
*[[ATPase|ATPase]]
+
*[[ATPase 3D structures|ATPase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Large Structures]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
-
[[Category: Leslie, A G.W]]
+
[[Category: Stock D]]
-
[[Category: Stock, D]]
+
[[Category: W Leslie AG]]
-
[[Category: Walker, J E]]
+
[[Category: Walker JE]]
-
[[Category: Atp synthase]]
+
-
[[Category: Atp-binding]]
+
-
[[Category: Hydrolase]]
+
-
[[Category: Inner membrane]]
+
-
[[Category: Mitochondria]]
+
-
[[Category: Transmembrane]]
+

Current revision

Refined structure of yeast F1c10 ATPase complex to 3 A resolution

PDB ID 2xok

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools