|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Transcription factor dimerization activates the p300 acetyltransferase== | | ==Transcription factor dimerization activates the p300 acetyltransferase== |
- | <StructureSection load='6gyt' size='340' side='right' caption='[[6gyt]], [[Resolution|resolution]] 2.50Å' scene=''> | + | <StructureSection load='6gyt' size='340' side='right'caption='[[6gyt]], [[Resolution|resolution]] 2.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6gyt]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6GYT OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6GYT FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6gyt]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6GYT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6GYT FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">EP300, P300 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6gyt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6gyt OCA], [https://pdbe.org/6gyt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6gyt RCSB], [https://www.ebi.ac.uk/pdbsum/6gyt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6gyt ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6gyt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6gyt OCA], [http://pdbe.org/6gyt PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6gyt RCSB], [http://www.ebi.ac.uk/pdbsum/6gyt PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6gyt ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/EP300_HUMAN EP300_HUMAN]] Note=Defects in EP300 may play a role in epithelial cancer. Note=Chromosomal aberrations involving EP300 may be a cause of acute myeloid leukemias. Translocation t(8;22)(p11;q13) with KAT6A. Defects in EP300 are the cause of Rubinstein-Taybi syndrome type 2 (RSTS2) [MIM:[http://omim.org/entry/613684 613684]]. A disorder characterized by craniofacial abnormalities, postnatal growth deficiency, broad thumbs, broad big toes, mental retardation and a propensity for development of malignancies. Some individuals with RSTS2 have less severe mental impairment, more severe microcephaly, and a greater degree of changes in facial bone structure than RSTS1 patients.<ref>PMID:15706485</ref> | + | [https://www.uniprot.org/uniprot/EP300_HUMAN EP300_HUMAN] Note=Defects in EP300 may play a role in epithelial cancer. Note=Chromosomal aberrations involving EP300 may be a cause of acute myeloid leukemias. Translocation t(8;22)(p11;q13) with KAT6A. Defects in EP300 are the cause of Rubinstein-Taybi syndrome type 2 (RSTS2) [MIM:[https://omim.org/entry/613684 613684]. A disorder characterized by craniofacial abnormalities, postnatal growth deficiency, broad thumbs, broad big toes, mental retardation and a propensity for development of malignancies. Some individuals with RSTS2 have less severe mental impairment, more severe microcephaly, and a greater degree of changes in facial bone structure than RSTS1 patients.<ref>PMID:15706485</ref> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/EP300_HUMAN EP300_HUMAN]] Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator in the presence of CREBBP. Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function. Acetylates HDAC1 leading to its inactivation and modulation of transcription. Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2. Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Acetylates FOXO1 and enhances its transcriptional activity.<ref>PMID:11701890</ref> <ref>PMID:10733570</ref> <ref>PMID:11430825</ref> <ref>PMID:12586840</ref> <ref>PMID:12929931</ref> <ref>PMID:15186775</ref> <ref>PMID:15890677</ref> <ref>PMID:16762839</ref> <ref>PMID:18722353</ref> | + | [https://www.uniprot.org/uniprot/EP300_HUMAN EP300_HUMAN] Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator in the presence of CREBBP. Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function. Acetylates HDAC1 leading to its inactivation and modulation of transcription. Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2. Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Acetylates FOXO1 and enhances its transcriptional activity.<ref>PMID:11701890</ref> <ref>PMID:10733570</ref> <ref>PMID:11430825</ref> <ref>PMID:12586840</ref> <ref>PMID:12929931</ref> <ref>PMID:15186775</ref> <ref>PMID:15890677</ref> <ref>PMID:16762839</ref> <ref>PMID:18722353</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
- | To support their growth in a competitive environment and cause pathogenesis, bacteria have evolved a broad repertoire of macromolecular machineries to deliver specific effectors and toxins. Among these multiprotein complexes, the type VI secretion system (T6SS) is a contractile nanomachine that targets both prokaryotic and eukaryotic cells. The T6SS comprises two functional subcomplexes: a bacteriophage-related tail structure anchored to the cell envelope by a membrane complex. As in other contractile injection systems, the tail is composed of an inner tube wrapped by a sheath and built on the baseplate. In the T6SS, the baseplate is not only the tail assembly platform, but also docks the tail to the membrane complex and hence serves as an evolutionary adaptor. Here we define the biogenesis pathway and report the cryo-electron microscopy (cryo-EM) structure of the wedge protein complex of the T6SS from enteroaggregative Escherichia coli (EAEC). Using an integrative approach, we unveil the molecular architecture of the whole T6SS baseplate and its interaction with the tail sheath, offering detailed insights into its biogenesis and function. We discuss architectural and mechanistic similarities but also reveal key differences with the T4 phage and Mu phage baseplates.
| + | The transcriptional co-activator p300 is a histone acetyltransferase (HAT) that is typically recruited to transcriptional enhancers and regulates gene expression by acetylating chromatin. Here we show that the activation of p300 directly depends on the activation and oligomerization status of transcription factor ligands. Using two model transcription factors, IRF3 and STAT1, we demonstrate that transcription factor dimerization enables the trans-autoacetylation of p300 in a highly conserved and intrinsically disordered autoinhibitory lysine-rich loop, resulting in p300 activation. We describe a crystal structure of p300 in which the autoinhibitory loop invades the active site of a neighbouring HAT domain, revealing a snapshot of a trans-autoacetylation reaction intermediate. Substrate access to the active site involves the rearrangement of an autoinhibitory RING domain. Our data explain how cellular signalling and the activation and dimerization of transcription factors control the activation of p300, and therefore explain why gene transcription is associated with chromatin acetylation. |
| | | |
- | Biogenesis and structure of a type VI secretion baseplate.,Cherrak Y, Rapisarda C, Pellarin R, Bouvier G, Bardiaux B, Allain F, Malosse C, Rey M, Chamot-Rooke J, Cascales E, Fronzes R, Durand E Nat Microbiol. 2018 Oct 15. pii: 10.1038/s41564-018-0260-1. doi:, 10.1038/s41564-018-0260-1. PMID:30323254<ref>PMID:30323254</ref>
| + | Transcription factor dimerization activates the p300 acetyltransferase.,Ortega E, Rengachari S, Ibrahim Z, Hoghoughi N, Gaucher J, Holehouse AS, Khochbin S, Panne D Nature. 2018 Oct;562(7728):538-544. doi: 10.1038/s41586-018-0621-1. Epub 2018 Oct, 15. PMID:30323286<ref>PMID:30323286</ref> |
| | | |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| </div> | | </div> |
| <div class="pdbe-citations 6gyt" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6gyt" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Histone acetyltransferase 3D structures|Histone acetyltransferase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: African clawed frog]] | + | [[Category: Homo sapiens]] |
- | [[Category: Human]] | + | [[Category: Large Structures]] |
- | [[Category: Ortega, E]] | + | [[Category: Xenopus laevis]] |
- | [[Category: Panne, D]] | + | [[Category: Ortega E]] |
- | [[Category: Acetyltransferase]] | + | [[Category: Panne D]] |
- | [[Category: Cbp]]
| + | |
- | [[Category: Chromatin]]
| + | |
- | [[Category: Gene regulation]]
| + | |
- | [[Category: P300]]
| + | |
- | [[Category: Transcriptional regulation]]
| + | |
| Structural highlights
Disease
EP300_HUMAN Note=Defects in EP300 may play a role in epithelial cancer. Note=Chromosomal aberrations involving EP300 may be a cause of acute myeloid leukemias. Translocation t(8;22)(p11;q13) with KAT6A. Defects in EP300 are the cause of Rubinstein-Taybi syndrome type 2 (RSTS2) [MIM:613684. A disorder characterized by craniofacial abnormalities, postnatal growth deficiency, broad thumbs, broad big toes, mental retardation and a propensity for development of malignancies. Some individuals with RSTS2 have less severe mental impairment, more severe microcephaly, and a greater degree of changes in facial bone structure than RSTS1 patients.[1]
Function
EP300_HUMAN Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator in the presence of CREBBP. Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function. Acetylates HDAC1 leading to its inactivation and modulation of transcription. Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2. Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Acetylates FOXO1 and enhances its transcriptional activity.[2] [3] [4] [5] [6] [7] [8] [9] [10]
Publication Abstract from PubMed
The transcriptional co-activator p300 is a histone acetyltransferase (HAT) that is typically recruited to transcriptional enhancers and regulates gene expression by acetylating chromatin. Here we show that the activation of p300 directly depends on the activation and oligomerization status of transcription factor ligands. Using two model transcription factors, IRF3 and STAT1, we demonstrate that transcription factor dimerization enables the trans-autoacetylation of p300 in a highly conserved and intrinsically disordered autoinhibitory lysine-rich loop, resulting in p300 activation. We describe a crystal structure of p300 in which the autoinhibitory loop invades the active site of a neighbouring HAT domain, revealing a snapshot of a trans-autoacetylation reaction intermediate. Substrate access to the active site involves the rearrangement of an autoinhibitory RING domain. Our data explain how cellular signalling and the activation and dimerization of transcription factors control the activation of p300, and therefore explain why gene transcription is associated with chromatin acetylation.
Transcription factor dimerization activates the p300 acetyltransferase.,Ortega E, Rengachari S, Ibrahim Z, Hoghoughi N, Gaucher J, Holehouse AS, Khochbin S, Panne D Nature. 2018 Oct;562(7728):538-544. doi: 10.1038/s41586-018-0621-1. Epub 2018 Oct, 15. PMID:30323286[11]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Roelfsema JH, White SJ, Ariyurek Y, Bartholdi D, Niedrist D, Papadia F, Bacino CA, den Dunnen JT, van Ommen GJ, Breuning MH, Hennekam RC, Peters DJ. Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet. 2005 Apr;76(4):572-80. Epub 2005 Feb 10. PMID:15706485 doi:S0002-9297(07)62869-9
- ↑ Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM, Montminy M, Evans RM. A transcriptional switch mediated by cofactor methylation. Science. 2001 Dec 21;294(5551):2507-11. Epub 2001 Nov 8. PMID:11701890 doi:10.1126/science.1065961
- ↑ Snowden AW, Anderson LA, Webster GA, Perkins ND. A novel transcriptional repression domain mediates p21(WAF1/CIP1) induction of p300 transactivation. Mol Cell Biol. 2000 Apr;20(8):2676-86. PMID:10733570
- ↑ Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hubscher U, Hottiger MO. Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell. 2001 Jun;7(6):1221-31. PMID:11430825
- ↑ Braganca J, Eloranta JJ, Bamforth SD, Ibbitt JC, Hurst HC, Bhattacharya S. Physical and functional interactions among AP-2 transcription factors, p300/CREB-binding protein, and CITED2. J Biol Chem. 2003 May 2;278(18):16021-9. Epub 2003 Feb 12. PMID:12586840 doi:10.1074/jbc.M208144200
- ↑ Iioka T, Furukawa K, Yamaguchi A, Shindo H, Yamashita S, Tsukazaki T. P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain. J Bone Miner Res. 2003 Aug;18(8):1419-29. PMID:12929931 doi:http://dx.doi.org/10.1359/jbmr.2003.18.8.1419
- ↑ An W, Kim J, Roeder RG. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell. 2004 Jun 11;117(6):735-48. PMID:15186775 doi:10.1016/j.cell.2004.05.009
- ↑ Perrot V, Rechler MM. The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol. 2005 Sep;19(9):2283-98. Epub 2005 May 12. PMID:15890677 doi:10.1210/me.2004-0292
- ↑ Qiu Y, Zhao Y, Becker M, John S, Parekh BS, Huang S, Hendarwanto A, Martinez ED, Chen Y, Lu H, Adkins NL, Stavreva DA, Wiench M, Georgel PT, Schiltz RL, Hager GL. HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol Cell. 2006 Jun 9;22(5):669-79. PMID:16762839 doi:10.1016/j.molcel.2006.04.019
- ↑ Han Y, Jin YH, Kim YJ, Kang BY, Choi HJ, Kim DW, Yeo CY, Lee KY. Acetylation of Sirt2 by p300 attenuates its deacetylase activity. Biochem Biophys Res Commun. 2008 Oct 31;375(4):576-80. doi:, 10.1016/j.bbrc.2008.08.042. Epub 2008 Aug 21. PMID:18722353 doi:10.1016/j.bbrc.2008.08.042
- ↑ Ortega E, Rengachari S, Ibrahim Z, Hoghoughi N, Gaucher J, Holehouse AS, Khochbin S, Panne D. Transcription factor dimerization activates the p300 acetyltransferase. Nature. 2018 Oct;562(7728):538-544. doi: 10.1038/s41586-018-0621-1. Epub 2018 Oct, 15. PMID:30323286 doi:http://dx.doi.org/10.1038/s41586-018-0621-1
|