6gyt

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (10:24, 15 November 2023) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
==Transcription factor dimerization activates the p300 acetyltransferase==
==Transcription factor dimerization activates the p300 acetyltransferase==
-
<StructureSection load='6gyt' size='340' side='right' caption='[[6gyt]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
+
<StructureSection load='6gyt' size='340' side='right'caption='[[6gyt]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6gyt]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6GYT OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6GYT FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6gyt]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6GYT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6GYT FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
-
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">EP300, P300 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6gyt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6gyt OCA], [https://pdbe.org/6gyt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6gyt RCSB], [https://www.ebi.ac.uk/pdbsum/6gyt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6gyt ProSAT]</span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6gyt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6gyt OCA], [http://pdbe.org/6gyt PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6gyt RCSB], [http://www.ebi.ac.uk/pdbsum/6gyt PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6gyt ProSAT]</span></td></tr>
+
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/EP300_HUMAN EP300_HUMAN]] Note=Defects in EP300 may play a role in epithelial cancer. Note=Chromosomal aberrations involving EP300 may be a cause of acute myeloid leukemias. Translocation t(8;22)(p11;q13) with KAT6A. Defects in EP300 are the cause of Rubinstein-Taybi syndrome type 2 (RSTS2) [MIM:[http://omim.org/entry/613684 613684]]. A disorder characterized by craniofacial abnormalities, postnatal growth deficiency, broad thumbs, broad big toes, mental retardation and a propensity for development of malignancies. Some individuals with RSTS2 have less severe mental impairment, more severe microcephaly, and a greater degree of changes in facial bone structure than RSTS1 patients.<ref>PMID:15706485</ref>
+
[https://www.uniprot.org/uniprot/EP300_HUMAN EP300_HUMAN] Note=Defects in EP300 may play a role in epithelial cancer. Note=Chromosomal aberrations involving EP300 may be a cause of acute myeloid leukemias. Translocation t(8;22)(p11;q13) with KAT6A. Defects in EP300 are the cause of Rubinstein-Taybi syndrome type 2 (RSTS2) [MIM:[https://omim.org/entry/613684 613684]. A disorder characterized by craniofacial abnormalities, postnatal growth deficiency, broad thumbs, broad big toes, mental retardation and a propensity for development of malignancies. Some individuals with RSTS2 have less severe mental impairment, more severe microcephaly, and a greater degree of changes in facial bone structure than RSTS1 patients.<ref>PMID:15706485</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/EP300_HUMAN EP300_HUMAN]] Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator in the presence of CREBBP. Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function. Acetylates HDAC1 leading to its inactivation and modulation of transcription. Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2. Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Acetylates FOXO1 and enhances its transcriptional activity.<ref>PMID:11701890</ref> <ref>PMID:10733570</ref> <ref>PMID:11430825</ref> <ref>PMID:12586840</ref> <ref>PMID:12929931</ref> <ref>PMID:15186775</ref> <ref>PMID:15890677</ref> <ref>PMID:16762839</ref> <ref>PMID:18722353</ref>
+
[https://www.uniprot.org/uniprot/EP300_HUMAN EP300_HUMAN] Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator in the presence of CREBBP. Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function. Acetylates HDAC1 leading to its inactivation and modulation of transcription. Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2. Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Acetylates FOXO1 and enhances its transcriptional activity.<ref>PMID:11701890</ref> <ref>PMID:10733570</ref> <ref>PMID:11430825</ref> <ref>PMID:12586840</ref> <ref>PMID:12929931</ref> <ref>PMID:15186775</ref> <ref>PMID:15890677</ref> <ref>PMID:16762839</ref> <ref>PMID:18722353</ref>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
To support their growth in a competitive environment and cause pathogenesis, bacteria have evolved a broad repertoire of macromolecular machineries to deliver specific effectors and toxins. Among these multiprotein complexes, the type VI secretion system (T6SS) is a contractile nanomachine that targets both prokaryotic and eukaryotic cells. The T6SS comprises two functional subcomplexes: a bacteriophage-related tail structure anchored to the cell envelope by a membrane complex. As in other contractile injection systems, the tail is composed of an inner tube wrapped by a sheath and built on the baseplate. In the T6SS, the baseplate is not only the tail assembly platform, but also docks the tail to the membrane complex and hence serves as an evolutionary adaptor. Here we define the biogenesis pathway and report the cryo-electron microscopy (cryo-EM) structure of the wedge protein complex of the T6SS from enteroaggregative Escherichia coli (EAEC). Using an integrative approach, we unveil the molecular architecture of the whole T6SS baseplate and its interaction with the tail sheath, offering detailed insights into its biogenesis and function. We discuss architectural and mechanistic similarities but also reveal key differences with the T4 phage and Mu phage baseplates.
+
The transcriptional co-activator p300 is a histone acetyltransferase (HAT) that is typically recruited to transcriptional enhancers and regulates gene expression by acetylating chromatin. Here we show that the activation of p300 directly depends on the activation and oligomerization status of transcription factor ligands. Using two model transcription factors, IRF3 and STAT1, we demonstrate that transcription factor dimerization enables the trans-autoacetylation of p300 in a highly conserved and intrinsically disordered autoinhibitory lysine-rich loop, resulting in p300 activation. We describe a crystal structure of p300 in which the autoinhibitory loop invades the active site of a neighbouring HAT domain, revealing a snapshot of a trans-autoacetylation reaction intermediate. Substrate access to the active site involves the rearrangement of an autoinhibitory RING domain. Our data explain how cellular signalling and the activation and dimerization of transcription factors control the activation of p300, and therefore explain why gene transcription is associated with chromatin acetylation.
-
Biogenesis and structure of a type VI secretion baseplate.,Cherrak Y, Rapisarda C, Pellarin R, Bouvier G, Bardiaux B, Allain F, Malosse C, Rey M, Chamot-Rooke J, Cascales E, Fronzes R, Durand E Nat Microbiol. 2018 Oct 15. pii: 10.1038/s41564-018-0260-1. doi:, 10.1038/s41564-018-0260-1. PMID:30323254<ref>PMID:30323254</ref>
+
Transcription factor dimerization activates the p300 acetyltransferase.,Ortega E, Rengachari S, Ibrahim Z, Hoghoughi N, Gaucher J, Holehouse AS, Khochbin S, Panne D Nature. 2018 Oct;562(7728):538-544. doi: 10.1038/s41586-018-0621-1. Epub 2018 Oct, 15. PMID:30323286<ref>PMID:30323286</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 6gyt" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 6gyt" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Histone acetyltransferase 3D structures|Histone acetyltransferase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: African clawed frog]]
+
[[Category: Homo sapiens]]
-
[[Category: Human]]
+
[[Category: Large Structures]]
-
[[Category: Ortega, E]]
+
[[Category: Xenopus laevis]]
-
[[Category: Panne, D]]
+
[[Category: Ortega E]]
-
[[Category: Acetyltransferase]]
+
[[Category: Panne D]]
-
[[Category: Cbp]]
+
-
[[Category: Chromatin]]
+
-
[[Category: Gene regulation]]
+
-
[[Category: P300]]
+
-
[[Category: Transcriptional regulation]]
+

Current revision

Transcription factor dimerization activates the p300 acetyltransferase

PDB ID 6gyt

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools